Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infssuni Structured version   Visualization version   GIF version

Theorem infssuni 8412
 Description: If an infinite set 𝐴 is included in the underlying set of a finite cover 𝐵, then there exists a set of the cover that contains an infinite number of element of 𝐴. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
infssuni ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infssuni
StepHypRef Expression
1 dfral2 3141 . . 3 (∀𝑥𝐵 (𝐴𝑥) ∈ Fin ↔ ¬ ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
2 iunfi 8409 . . . . . . . 8 ((𝐵 ∈ Fin ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ Fin) → 𝑥𝐵 (𝐴𝑥) ∈ Fin)
3 iunin2 4716 . . . . . . . . . 10 𝑥𝐵 (𝐴𝑥) = (𝐴 𝑥𝐵 𝑥)
43eleq1i 2840 . . . . . . . . 9 ( 𝑥𝐵 (𝐴𝑥) ∈ Fin ↔ (𝐴 𝑥𝐵 𝑥) ∈ Fin)
5 uniiun 4705 . . . . . . . . . . . . 13 𝐵 = 𝑥𝐵 𝑥
65eqcomi 2779 . . . . . . . . . . . 12 𝑥𝐵 𝑥 = 𝐵
76ineq2i 3960 . . . . . . . . . . 11 (𝐴 𝑥𝐵 𝑥) = (𝐴 𝐵)
87eleq1i 2840 . . . . . . . . . 10 ((𝐴 𝑥𝐵 𝑥) ∈ Fin ↔ (𝐴 𝐵) ∈ Fin)
9 df-ss 3735 . . . . . . . . . . . 12 (𝐴 𝐵 ↔ (𝐴 𝐵) = 𝐴)
10 eleq1 2837 . . . . . . . . . . . . 13 ((𝐴 𝐵) = 𝐴 → ((𝐴 𝐵) ∈ Fin ↔ 𝐴 ∈ Fin))
11 pm2.24 122 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
1210, 11syl6bi 243 . . . . . . . . . . . 12 ((𝐴 𝐵) = 𝐴 → ((𝐴 𝐵) ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
139, 12sylbi 207 . . . . . . . . . . 11 (𝐴 𝐵 → ((𝐴 𝐵) ∈ Fin → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
1413com12 32 . . . . . . . . . 10 ((𝐴 𝐵) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
158, 14sylbi 207 . . . . . . . . 9 ((𝐴 𝑥𝐵 𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
164, 15sylbi 207 . . . . . . . 8 ( 𝑥𝐵 (𝐴𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
172, 16syl 17 . . . . . . 7 ((𝐵 ∈ Fin ∧ ∀𝑥𝐵 (𝐴𝑥) ∈ Fin) → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)))
1817ex 397 . . . . . 6 (𝐵 ∈ Fin → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → (𝐴 𝐵 → (¬ 𝐴 ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))))
1918com24 95 . . . . 5 (𝐵 ∈ Fin → (¬ 𝐴 ∈ Fin → (𝐴 𝐵 → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))))
2019com12 32 . . . 4 𝐴 ∈ Fin → (𝐵 ∈ Fin → (𝐴 𝐵 → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))))
21203imp 1100 . . 3 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → (∀𝑥𝐵 (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
221, 21syl5bir 233 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → (¬ ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin))
2322pm2.18d 125 1 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 𝐵) → ∃𝑥𝐵 ¬ (𝐴𝑥) ∈ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061   ∩ cin 3720   ⊆ wss 3721  ∪ cuni 4572  ∪ ciun 4652  Fincfn 8108 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-fin 8112 This theorem is referenced by:  bwth  21433
 Copyright terms: Public domain W3C validator