MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfidom Structured version   Visualization version   GIF version

Theorem infpwfidom 8889
Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
infpwfidom ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))

Proof of Theorem infpwfidom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snelpwi 4942 . . 3 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
2 snfi 8079 . . . 4 {𝑥} ∈ Fin
32a1i 11 . . 3 (𝑥𝐴 → {𝑥} ∈ Fin)
41, 3elind 3831 . 2 (𝑥𝐴 → {𝑥} ∈ (𝒫 𝐴 ∩ Fin))
5 sneqbg 4406 . . 3 (𝑥𝐴 → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
65adantr 480 . 2 ((𝑥𝐴𝑦𝐴) → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
74, 6dom2 8040 1 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  cdom 7995  Fincfn 7997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-en 7998  df-dom 7999  df-fin 8001
This theorem is referenced by:  infpwfien  8923  ttukeylem1  9369  canthnum  9509
  Copyright terms: Public domain W3C validator