![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infn0 | Structured version Visualization version GIF version |
Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
infn0 | ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7231 | . . 3 ⊢ ∅ ∈ ω | |
2 | infsdomnn 8376 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ ∅ ∈ ω) → ∅ ≺ 𝐴) | |
3 | 1, 2 | mpan2 663 | . 2 ⊢ (ω ≼ 𝐴 → ∅ ≺ 𝐴) |
4 | reldom 8114 | . . . 4 ⊢ Rel ≼ | |
5 | 4 | brrelex2i 5299 | . . 3 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
6 | 0sdomg 8244 | . . 3 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
8 | 3, 7 | mpbid 222 | 1 ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2144 ≠ wne 2942 Vcvv 3349 ∅c0 4061 class class class wbr 4784 ωcom 7211 ≼ cdom 8106 ≺ csdm 8107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-om 7212 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 |
This theorem is referenced by: infpwfien 9084 cdainf 9215 infxp 9238 infpss 9240 alephmul 9601 csdfil 21917 |
Copyright terms: Public domain | W3C validator |