![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infltoreq | Structured version Visualization version GIF version |
Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
Ref | Expression |
---|---|
infltoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
infltoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infltoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
infltoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
infltoreq.5 | ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
infltoreq | ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infltoreq.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
2 | cnvso 5835 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
3 | 1, 2 | sylib 208 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
4 | infltoreq.2 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | infltoreq.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
6 | infltoreq.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
7 | infltoreq.5 | . . . 4 ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) | |
8 | df-inf 8514 | . . . 4 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
9 | 7, 8 | syl6eq 2810 | . . 3 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, ◡𝑅)) |
10 | 3, 4, 5, 6, 9 | supgtoreq 8541 | . 2 ⊢ (𝜑 → (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆)) |
11 | ne0i 4064 | . . . . . . 7 ⊢ (𝐶 ∈ 𝐵 → 𝐵 ≠ ∅) | |
12 | 6, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ ∅) |
13 | fiinfcl 8572 | . . . . . 6 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
14 | 1, 5, 12, 4, 13 | syl13anc 1479 | . . . . 5 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
15 | 7, 14 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
16 | brcnvg 5458 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝐶◡𝑅𝑆 ↔ 𝑆𝑅𝐶)) | |
17 | 16 | bicomd 213 | . . . 4 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵) → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
18 | 6, 15, 17 | syl2anc 696 | . . 3 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ 𝐶◡𝑅𝑆)) |
19 | 18 | orbi1d 741 | . 2 ⊢ (𝜑 → ((𝑆𝑅𝐶 ∨ 𝐶 = 𝑆) ↔ (𝐶◡𝑅𝑆 ∨ 𝐶 = 𝑆))) |
20 | 10, 19 | mpbird 247 | 1 ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 Or wor 5186 ◡ccnv 5265 Fincfn 8121 supcsup 8511 infcinf 8512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-om 7231 df-1o 7729 df-er 7911 df-en 8122 df-fin 8125 df-sup 8513 df-inf 8514 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |