Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem2 Structured version   Visualization version   GIF version

Theorem infleinflem2 40085
Description: Lemma for infleinf 40086, when inf(𝐵, ℝ*, < ) = -∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem2.a (𝜑𝐴 ⊆ ℝ*)
infleinflem2.b (𝜑𝐵 ⊆ ℝ*)
infleinflem2.r (𝜑𝑅 ∈ ℝ)
infleinflem2.x (𝜑𝑋𝐵)
infleinflem2.t (𝜑𝑋 < (𝑅 − 2))
infleinflem2.z (𝜑𝑍𝐴)
infleinflem2.l (𝜑𝑍 ≤ (𝑋 +𝑒 1))
Assertion
Ref Expression
infleinflem2 (𝜑𝑍 < 𝑅)

Proof of Theorem infleinflem2
StepHypRef Expression
1 infleinflem2.r . . . 4 (𝜑𝑅 ∈ ℝ)
21adantr 472 . . 3 ((𝜑𝑍 = -∞) → 𝑅 ∈ ℝ)
3 simpr 479 . . 3 ((𝜑𝑍 = -∞) → 𝑍 = -∞)
4 simpr 479 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 = -∞)
5 mnflt 12150 . . . . 5 (𝑅 ∈ ℝ → -∞ < 𝑅)
65adantr 472 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → -∞ < 𝑅)
74, 6eqbrtrd 4826 . . 3 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 < 𝑅)
82, 3, 7syl2anc 696 . 2 ((𝜑𝑍 = -∞) → 𝑍 < 𝑅)
9 simpl 474 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝜑)
10 neqne 2940 . . . 4 𝑍 = -∞ → 𝑍 ≠ -∞)
1110adantl 473 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 ≠ -∞)
121adantr 472 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑅 ∈ ℝ)
13 id 22 . . . . . . . 8 (𝜑𝜑)
14 infleinflem2.x . . . . . . . 8 (𝜑𝑋𝐵)
15 infleinflem2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1615sselda 3744 . . . . . . . 8 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1713, 14, 16syl2anc 696 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
1817adantr 472 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ*)
19 infleinflem2.z . . . . . . . . . 10 (𝜑𝑍𝐴)
20 infleinflem2.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ*)
2120sselda 3744 . . . . . . . . . 10 ((𝜑𝑍𝐴) → 𝑍 ∈ ℝ*)
2213, 19, 21syl2anc 696 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ*)
2322adantr 472 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ*)
24 simpr 479 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ -∞)
25 pnfxr 10284 . . . . . . . . . . 11 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
27 peano2rem 10540 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ)
2827rexrd 10281 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ*)
291, 28syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) ∈ ℝ*)
3015, 14sseldd 3745 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ*)
31 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ*𝑋 ∈ ℝ*)
32 1re 10231 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
3332rexri 10289 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ* → 1 ∈ ℝ*)
3531, 34xaddcld 12324 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ* → (𝑋 +𝑒 1) ∈ ℝ*)
3630, 35syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) ∈ ℝ*)
37 infleinflem2.l . . . . . . . . . . . 12 (𝜑𝑍 ≤ (𝑋 +𝑒 1))
38 infleinflem2.t . . . . . . . . . . . . 13 (𝜑𝑋 < (𝑅 − 2))
39 oveq1 6820 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (𝑋 +𝑒 1) = (-∞ +𝑒 1))
40 renepnf 10279 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℝ → 1 ≠ +∞)
4132, 40ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 1 ≠ +∞
42 xaddmnf2 12253 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
4333, 41, 42mp2an 710 . . . . . . . . . . . . . . . . . . . 20 (-∞ +𝑒 1) = -∞
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (-∞ +𝑒 1) = -∞)
4539, 44eqtrd 2794 . . . . . . . . . . . . . . . . . 18 (𝑋 = -∞ → (𝑋 +𝑒 1) = -∞)
4645adantl 473 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
4727mnfltd 12151 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → -∞ < (𝑅 − 1))
4847adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < (𝑅 − 1))
4946, 48eqbrtrd 4826 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
5049adantlr 753 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
51503adantl3 1174 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
52 simpl 474 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)))
53 simpl2 1230 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ*)
54 neqne 2940 . . . . . . . . . . . . . . . . 17 𝑋 = -∞ → 𝑋 ≠ -∞)
5554adantl 473 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ -∞)
56 simp2 1132 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ*)
5725a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → +∞ ∈ ℝ*)
58 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ)
59 2re 11282 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6059a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 2 ∈ ℝ)
6158, 60resubcld 10650 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ)
6261rexrd 10281 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ*)
63623ad2ant1 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ*)
64 simp3 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
6561ltpnfd 12148 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) < +∞)
66653ad2ant1 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) < +∞)
6756, 63, 57, 64, 66xrlttrd 12183 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < +∞)
6856, 57, 67xrltned 40071 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ≠ +∞)
6968adantr 472 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ +∞)
7053, 55, 69xrred 40079 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
7271ad2antlr 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ)
7361ad2antrr 764 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ)
74 1red 10247 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 1 ∈ ℝ)
7572, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 1 ∈ ℝ)
76 simpr 479 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
7772, 73, 75, 76ltadd1dd 10830 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < ((𝑅 − 2) + 1))
78 recn 10218 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
79 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 𝑅 ∈ ℂ)
80 2cnd 11285 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 2 ∈ ℂ)
81 1cnd 10248 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 1 ∈ ℂ)
8279, 80, 81subsubd 10612 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = ((𝑅 − 2) + 1))
83 2m1e1 11327 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 − 1) = 1
8483oveq2i 6824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 − (2 − 1)) = (𝑅 − 1)
8584a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = (𝑅 − 1))
8682, 85eqtr3d 2796 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℂ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8778, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8887ad2antrr 764 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑅 − 2) + 1) = (𝑅 − 1))
8977, 88breqtrd 4830 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < (𝑅 − 1))
9071, 74rexaddd 12258 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) = (𝑋 + 1))
9190breq1d 4814 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9291ad2antlr 765 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9389, 92mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
9493an32s 881 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
95943adantl2 1173 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
9652, 70, 95syl2anc 696 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
9751, 96pm2.61dan 867 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
981, 30, 38, 97syl3anc 1477 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) < (𝑅 − 1))
9922, 36, 29, 37, 98xrlelttrd 12184 . . . . . . . . . . 11 (𝜑𝑍 < (𝑅 − 1))
10027ltpnfd 12148 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) < +∞)
1011, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) < +∞)
10222, 29, 26, 99, 101xrlttrd 12183 . . . . . . . . . 10 (𝜑𝑍 < +∞)
10322, 26, 102xrltned 40071 . . . . . . . . 9 (𝜑𝑍 ≠ +∞)
104103adantr 472 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ +∞)
10523, 24, 104xrred 40079 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ)
10637adantr 472 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
107 simpl3 1232 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
10845adantl 473 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
109 mnflt 12150 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → -∞ < 𝑍)
110109adantr 472 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < 𝑍)
111108, 110eqbrtrd 4826 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < 𝑍)
112 mnfxr 10288 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
113108, 112syl6eqel 2847 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) ∈ ℝ*)
114 rexr 10277 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ*)
115114adantr 472 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → 𝑍 ∈ ℝ*)
116113, 115xrltnled 40077 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ((𝑋 +𝑒 1) < 𝑍 ↔ ¬ 𝑍 ≤ (𝑋 +𝑒 1)))
117111, 116mpbid 222 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
1181173ad2antl1 1201 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
119107, 118pm2.65da 601 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → ¬ 𝑋 = -∞)
120119neqned 2939 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ≠ -∞)
121105, 18, 106, 120syl3anc 1477 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ -∞)
1221, 17, 38, 68syl3anc 1477 . . . . . . 7 (𝜑𝑋 ≠ +∞)
123122adantr 472 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ +∞)
12418, 121, 123xrred 40079 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ)
12538adantr 472 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 < (𝑅 − 2))
12612, 124, 125jca31 558 . . . 4 ((𝜑𝑍 ≠ -∞) → ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)))
127 simplr 809 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ∈ ℝ)
128 simp-4r 827 . . . . . 6 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ∈ ℝ)
12971, 74readdcld 10261 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
13090, 129eqeltrd 2839 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) ∈ ℝ)
131128, 130syl 17 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) ∈ ℝ)
13258ad4antr 771 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑅 ∈ ℝ)
133 simpr 479 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ≤ (𝑋 +𝑒 1))
134130ad3antlr 769 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) ∈ ℝ)
13527ad3antrrr 768 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) ∈ ℝ)
13658ad3antrrr 768 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → 𝑅 ∈ ℝ)
13793adantr 472 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
138136ltm1d 11148 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) < 𝑅)
139134, 135, 136, 137, 138lttrd 10390 . . . . . 6 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < 𝑅)
140139adantr 472 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) < 𝑅)
141127, 131, 132, 133, 140lelttrd 10387 . . . 4 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 < 𝑅)
142126, 105, 106, 141syl21anc 1476 . . 3 ((𝜑𝑍 ≠ -∞) → 𝑍 < 𝑅)
1439, 11, 142syl2anc 696 . 2 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 < 𝑅)
1448, 143pm2.61dan 867 1 (𝜑𝑍 < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wss 3715   class class class wbr 4804  (class class class)co 6813  cc 10126  cr 10127  1c1 10129   + caddc 10131  +∞cpnf 10263  -∞cmnf 10264  *cxr 10265   < clt 10266  cle 10267  cmin 10458  2c2 11262   +𝑒 cxad 12137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-2 11271  df-xadd 12140
This theorem is referenced by:  infleinf  40086
  Copyright terms: Public domain W3C validator