MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inflb Structured version   Visualization version   GIF version

Theorem inflb 8392
Description: An infimum is a lower bound. See also infcl 8391 and infglb 8393. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1 (𝜑𝑅 Or 𝐴)
infcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
Assertion
Ref Expression
inflb (𝜑 → (𝐶𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem inflb
StepHypRef Expression
1 infcl.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
2 cnvso 5672 . . . . . 6 (𝑅 Or 𝐴𝑅 Or 𝐴)
31, 2sylib 208 . . . . 5 (𝜑𝑅 Or 𝐴)
4 infcl.2 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦𝐴 (𝑥𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)))
51, 4infcllem 8390 . . . . 5 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
63, 5supub 8362 . . . 4 (𝜑 → (𝐶𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
76imp 445 . . 3 ((𝜑𝐶𝐵) → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)
8 df-inf 8346 . . . . . 6 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
98a1i 11 . . . . 5 ((𝜑𝐶𝐵) → inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅))
109breq2d 4663 . . . 4 ((𝜑𝐶𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
113, 5supcl 8361 . . . . 5 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
12 brcnvg 5301 . . . . . 6 ((sup(𝐵, 𝐴, 𝑅) ∈ 𝐴𝐶𝐵) → (sup(𝐵, 𝐴, 𝑅)𝑅𝐶𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
1312bicomd 213 . . . . 5 ((sup(𝐵, 𝐴, 𝑅) ∈ 𝐴𝐶𝐵) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1411, 13sylan 488 . . . 4 ((𝜑𝐶𝐵) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
1510, 14bitrd 268 . . 3 ((𝜑𝐶𝐵) → (𝐶𝑅inf(𝐵, 𝐴, 𝑅) ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶))
167, 15mtbird 315 . 2 ((𝜑𝐶𝐵) → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅))
1716ex 450 1 (𝜑 → (𝐶𝐵 → ¬ 𝐶𝑅inf(𝐵, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  wrex 2912   class class class wbr 4651   Or wor 5032  ccnv 5111  supcsup 8343  infcinf 8344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-po 5033  df-so 5034  df-cnv 5120  df-iota 5849  df-riota 6608  df-sup 8345  df-inf 8346
This theorem is referenced by:  infrelb  11005  infxrlb  12161  infssd  29473  infxrge0lb  29514  omssubadd  30347  ballotlemimin  30552  ballotlemfrcn0  30576  wsuclb  31761
  Copyright terms: Public domain W3C validator