MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inficl Structured version   Visualization version   GIF version

Theorem inficl 8484
Description: A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
inficl (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem inficl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssfii 8478 . . 3 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
2 eqimss2 3787 . . . . . . . 8 (𝑧 = 𝐴𝐴𝑧)
32biantrurd 530 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)))
4 eleq2 2816 . . . . . . . . 9 (𝑧 = 𝐴 → ((𝑥𝑦) ∈ 𝑧 ↔ (𝑥𝑦) ∈ 𝐴))
54raleqbi1dv 3273 . . . . . . . 8 (𝑧 = 𝐴 → (∀𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
65raleqbi1dv 3273 . . . . . . 7 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
73, 6bitr3d 270 . . . . . 6 (𝑧 = 𝐴 → ((𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
87elabg 3479 . . . . 5 (𝐴𝑉 → (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
9 intss1 4632 . . . . 5 (𝐴 ∈ {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} → {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴)
108, 9syl6bir 244 . . . 4 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
11 dffi2 8482 . . . . 5 (𝐴𝑉 → (fi‘𝐴) = {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)})
1211sseq1d 3761 . . . 4 (𝐴𝑉 → ((fi‘𝐴) ⊆ 𝐴 {𝑧 ∣ (𝐴𝑧 ∧ ∀𝑥𝑧𝑦𝑧 (𝑥𝑦) ∈ 𝑧)} ⊆ 𝐴))
1310, 12sylibrd 249 . . 3 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) ⊆ 𝐴))
14 eqss 3747 . . . 4 ((fi‘𝐴) = 𝐴 ↔ ((fi‘𝐴) ⊆ 𝐴𝐴 ⊆ (fi‘𝐴)))
1514simplbi2com 658 . . 3 (𝐴 ⊆ (fi‘𝐴) → ((fi‘𝐴) ⊆ 𝐴 → (fi‘𝐴) = 𝐴))
161, 13, 15sylsyld 61 . 2 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 → (fi‘𝐴) = 𝐴))
17 fiin 8481 . . . 4 ((𝑥 ∈ (fi‘𝐴) ∧ 𝑦 ∈ (fi‘𝐴)) → (𝑥𝑦) ∈ (fi‘𝐴))
1817rgen2a 3103 . . 3 𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴)
19 eleq2 2816 . . . . 5 ((fi‘𝐴) = 𝐴 → ((𝑥𝑦) ∈ (fi‘𝐴) ↔ (𝑥𝑦) ∈ 𝐴))
2019raleqbi1dv 3273 . . . 4 ((fi‘𝐴) = 𝐴 → (∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2120raleqbi1dv 3273 . . 3 ((fi‘𝐴) = 𝐴 → (∀𝑥 ∈ (fi‘𝐴)∀𝑦 ∈ (fi‘𝐴)(𝑥𝑦) ∈ (fi‘𝐴) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴))
2218, 21mpbii 223 . 2 ((fi‘𝐴) = 𝐴 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
2316, 22impbid1 215 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴 ↔ (fi‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  {cab 2734  wral 3038  cin 3702  wss 3703   cint 4615  cfv 6037  ficfi 8469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-en 8110  df-fin 8113  df-fi 8470
This theorem is referenced by:  fipwuni  8485  fisn  8486  fitop  20878  ordtbaslem  21165  ptbasin2  21554  filfi  21835  fmfnfmlem3  21932  ustuqtop2  22218  ldgenpisys  30509
  Copyright terms: Public domain W3C validator