![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infexd | Structured version Visualization version GIF version |
Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.) |
Ref | Expression |
---|---|
infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
Ref | Expression |
---|---|
infexd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 8390 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | infexd.1 | . . . 4 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
3 | cnvso 5712 | . . . 4 ⊢ (𝑅 Or 𝐴 ↔ ◡𝑅 Or 𝐴) | |
4 | 2, 3 | sylib 208 | . . 3 ⊢ (𝜑 → ◡𝑅 Or 𝐴) |
5 | 4 | supexd 8400 | . 2 ⊢ (𝜑 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) |
6 | 1, 5 | syl5eqel 2734 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 Vcvv 3231 Or wor 5063 ◡ccnv 5142 supcsup 8387 infcinf 8388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rmo 2949 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-po 5064 df-so 5065 df-cnv 5151 df-sup 8389 df-inf 8390 |
This theorem is referenced by: infex 8440 omsfval 30484 wsucex 31896 prmdvdsfmtnof1 41824 |
Copyright terms: Public domain | W3C validator |