MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infexd Structured version   Visualization version   GIF version

Theorem infexd 8430
Description: An infimum is a set. (Contributed by AV, 2-Sep-2020.)
Hypothesis
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
infexd (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem infexd
StepHypRef Expression
1 df-inf 8390 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 infexd.1 . . . 4 (𝜑𝑅 Or 𝐴)
3 cnvso 5712 . . . 4 (𝑅 Or 𝐴𝑅 Or 𝐴)
42, 3sylib 208 . . 3 (𝜑𝑅 Or 𝐴)
54supexd 8400 . 2 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ V)
61, 5syl5eqel 2734 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2030  Vcvv 3231   Or wor 5063  ccnv 5142  supcsup 8387  infcinf 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rmo 2949  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-po 5064  df-so 5065  df-cnv 5151  df-sup 8389  df-inf 8390
This theorem is referenced by:  infex  8440  omsfval  30484  wsucex  31896  prmdvdsfmtnof1  41824
  Copyright terms: Public domain W3C validator