![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infeq5i | Structured version Visualization version GIF version |
Description: Half of infeq5 8572. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
infeq5i | ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difexg 4841 | . 2 ⊢ (ω ∈ V → (ω ∖ {∅}) ∈ V) | |
2 | 0ex 4823 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | snid 4241 | . . . 4 ⊢ ∅ ∈ {∅} |
4 | disj4 4058 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω) | |
5 | disj3 4054 | . . . . . 6 ⊢ ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅})) | |
6 | 4, 5 | bitr3i 266 | . . . . 5 ⊢ (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅})) |
7 | peano1 7127 | . . . . . . 7 ⊢ ∅ ∈ ω | |
8 | eleq2 2719 | . . . . . . 7 ⊢ (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅}))) | |
9 | 7, 8 | mpbii 223 | . . . . . 6 ⊢ (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅})) |
10 | 9 | eldifbd 3620 | . . . . 5 ⊢ (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅}) |
11 | 6, 10 | sylbi 207 | . . . 4 ⊢ (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅}) |
12 | 3, 11 | mt4 115 | . . 3 ⊢ (ω ∖ {∅}) ⊊ ω |
13 | unidif0 4868 | . . . . 5 ⊢ ∪ (ω ∖ {∅}) = ∪ ω | |
14 | limom 7122 | . . . . . 6 ⊢ Lim ω | |
15 | limuni 5823 | . . . . . 6 ⊢ (Lim ω → ω = ∪ ω) | |
16 | 14, 15 | ax-mp 5 | . . . . 5 ⊢ ω = ∪ ω |
17 | 13, 16 | eqtr4i 2676 | . . . 4 ⊢ ∪ (ω ∖ {∅}) = ω |
18 | 17 | psseq2i 3730 | . . 3 ⊢ ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω) |
19 | 12, 18 | mpbir 221 | . 2 ⊢ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) |
20 | psseq1 3727 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ 𝑥)) | |
21 | unieq 4476 | . . . . 5 ⊢ (𝑥 = (ω ∖ {∅}) → ∪ 𝑥 = ∪ (ω ∖ {∅})) | |
22 | 21 | psseq2d 3733 | . . . 4 ⊢ (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
23 | 20, 22 | bitrd 268 | . . 3 ⊢ (𝑥 = (ω ∖ {∅}) → (𝑥 ⊊ ∪ 𝑥 ↔ (ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}))) |
24 | 23 | spcegv 3325 | . 2 ⊢ ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ ∪ (ω ∖ {∅}) → ∃𝑥 𝑥 ⊊ ∪ 𝑥)) |
25 | 1, 19, 24 | mpisyl 21 | 1 ⊢ (ω ∈ V → ∃𝑥 𝑥 ⊊ ∪ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∃wex 1744 ∈ wcel 2030 Vcvv 3231 ∖ cdif 3604 ∩ cin 3606 ⊊ wpss 3608 ∅c0 3948 {csn 4210 ∪ cuni 4468 Lim wlim 5762 ωcom 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-om 7108 |
This theorem is referenced by: infeq5 8572 inf5 8580 |
Copyright terms: Public domain | W3C validator |