Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq5i Structured version   Visualization version   GIF version

Theorem infeq5i 8571
 Description: Half of infeq5 8572. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
infeq5i (ω ∈ V → ∃𝑥 𝑥 𝑥)

Proof of Theorem infeq5i
StepHypRef Expression
1 difexg 4841 . 2 (ω ∈ V → (ω ∖ {∅}) ∈ V)
2 0ex 4823 . . . . 5 ∅ ∈ V
32snid 4241 . . . 4 ∅ ∈ {∅}
4 disj4 4058 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ¬ (ω ∖ {∅}) ⊊ ω)
5 disj3 4054 . . . . . 6 ((ω ∩ {∅}) = ∅ ↔ ω = (ω ∖ {∅}))
64, 5bitr3i 266 . . . . 5 (¬ (ω ∖ {∅}) ⊊ ω ↔ ω = (ω ∖ {∅}))
7 peano1 7127 . . . . . . 7 ∅ ∈ ω
8 eleq2 2719 . . . . . . 7 (ω = (ω ∖ {∅}) → (∅ ∈ ω ↔ ∅ ∈ (ω ∖ {∅})))
97, 8mpbii 223 . . . . . 6 (ω = (ω ∖ {∅}) → ∅ ∈ (ω ∖ {∅}))
109eldifbd 3620 . . . . 5 (ω = (ω ∖ {∅}) → ¬ ∅ ∈ {∅})
116, 10sylbi 207 . . . 4 (¬ (ω ∖ {∅}) ⊊ ω → ¬ ∅ ∈ {∅})
123, 11mt4 115 . . 3 (ω ∖ {∅}) ⊊ ω
13 unidif0 4868 . . . . 5 (ω ∖ {∅}) = ω
14 limom 7122 . . . . . 6 Lim ω
15 limuni 5823 . . . . . 6 (Lim ω → ω = ω)
1614, 15ax-mp 5 . . . . 5 ω = ω
1713, 16eqtr4i 2676 . . . 4 (ω ∖ {∅}) = ω
1817psseq2i 3730 . . 3 ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) ↔ (ω ∖ {∅}) ⊊ ω)
1912, 18mpbir 221 . 2 (ω ∖ {∅}) ⊊ (ω ∖ {∅})
20 psseq1 3727 . . . 4 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ 𝑥))
21 unieq 4476 . . . . 5 (𝑥 = (ω ∖ {∅}) → 𝑥 = (ω ∖ {∅}))
2221psseq2d 3733 . . . 4 (𝑥 = (ω ∖ {∅}) → ((ω ∖ {∅}) ⊊ 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2320, 22bitrd 268 . . 3 (𝑥 = (ω ∖ {∅}) → (𝑥 𝑥 ↔ (ω ∖ {∅}) ⊊ (ω ∖ {∅})))
2423spcegv 3325 . 2 ((ω ∖ {∅}) ∈ V → ((ω ∖ {∅}) ⊊ (ω ∖ {∅}) → ∃𝑥 𝑥 𝑥))
251, 19, 24mpisyl 21 1 (ω ∈ V → ∃𝑥 𝑥 𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1523  ∃wex 1744   ∈ wcel 2030  Vcvv 3231   ∖ cdif 3604   ∩ cin 3606   ⊊ wpss 3608  ∅c0 3948  {csn 4210  ∪ cuni 4468  Lim wlim 5762  ωcom 7107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-om 7108 This theorem is referenced by:  infeq5  8572  inf5  8580
 Copyright terms: Public domain W3C validator