![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infenaleph | Structured version Visualization version GIF version |
Description: An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infenaleph | ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardidm 8995 | . . . . 5 ⊢ (card‘(card‘𝐴)) = (card‘𝐴) | |
2 | cardom 9022 | . . . . . . 7 ⊢ (card‘ω) = ω | |
3 | simpr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴) | |
4 | omelon 8718 | . . . . . . . . . 10 ⊢ ω ∈ On | |
5 | onenon 8985 | . . . . . . . . . 10 ⊢ (ω ∈ On → ω ∈ dom card) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . . 9 ⊢ ω ∈ dom card |
7 | simpl 474 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card) | |
8 | carddom2 9013 | . . . . . . . . 9 ⊢ ((ω ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) | |
9 | 6, 7, 8 | sylancr 698 | . . . . . . . 8 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘ω) ⊆ (card‘𝐴) ↔ ω ≼ 𝐴)) |
10 | 3, 9 | mpbird 247 | . . . . . . 7 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘ω) ⊆ (card‘𝐴)) |
11 | 2, 10 | syl5eqssr 3791 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ω ⊆ (card‘𝐴)) |
12 | cardalephex 9123 | . . . . . 6 ⊢ (ω ⊆ (card‘𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ((card‘(card‘𝐴)) = (card‘𝐴) ↔ ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥))) |
14 | 1, 13 | mpbii 223 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥)) |
15 | eqcom 2767 | . . . . 5 ⊢ ((card‘𝐴) = (ℵ‘𝑥) ↔ (ℵ‘𝑥) = (card‘𝐴)) | |
16 | 15 | rexbii 3179 | . . . 4 ⊢ (∃𝑥 ∈ On (card‘𝐴) = (ℵ‘𝑥) ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
17 | 14, 16 | sylib 208 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
18 | alephfnon 9098 | . . . 4 ⊢ ℵ Fn On | |
19 | fvelrnb 6406 | . . . 4 ⊢ (ℵ Fn On → ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴))) | |
20 | 18, 19 | ax-mp 5 | . . 3 ⊢ ((card‘𝐴) ∈ ran ℵ ↔ ∃𝑥 ∈ On (ℵ‘𝑥) = (card‘𝐴)) |
21 | 17, 20 | sylibr 224 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ∈ ran ℵ) |
22 | cardid2 8989 | . . 3 ⊢ (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴) | |
23 | 22 | adantr 472 | . 2 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (card‘𝐴) ≈ 𝐴) |
24 | breq1 4807 | . . 3 ⊢ (𝑥 = (card‘𝐴) → (𝑥 ≈ 𝐴 ↔ (card‘𝐴) ≈ 𝐴)) | |
25 | 24 | rspcev 3449 | . 2 ⊢ (((card‘𝐴) ∈ ran ℵ ∧ (card‘𝐴) ≈ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
26 | 21, 23, 25 | syl2anc 696 | 1 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ⊆ wss 3715 class class class wbr 4804 dom cdm 5266 ran crn 5267 Oncon0 5884 Fn wfn 6044 ‘cfv 6049 ωcom 7231 ≈ cen 8120 ≼ cdom 8121 cardccrd 8971 ℵcale 8972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-oi 8582 df-har 8630 df-card 8975 df-aleph 8976 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |