MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcvgaux1i Structured version   Visualization version   GIF version

Theorem infcvgaux1i 14788
Description: Auxiliary theorem for applications of supcvg 14787. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.)
Hypotheses
Ref Expression
infcvg.1 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
infcvg.2 (𝑦𝑋𝐴 ∈ ℝ)
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
Assertion
Ref Expression
infcvgaux1i (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝑧,𝑤,𝑅   𝑥,𝑋,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)   𝑋(𝑧,𝑤)   𝑍(𝑧,𝑤)

Proof of Theorem infcvgaux1i
StepHypRef Expression
1 infcvg.1 . . 3 𝑅 = {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2 infcvg.2 . . . . . . 7 (𝑦𝑋𝐴 ∈ ℝ)
32renegcld 10649 . . . . . 6 (𝑦𝑋 → -𝐴 ∈ ℝ)
4 eleq1 2827 . . . . . 6 (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ))
53, 4syl5ibrcom 237 . . . . 5 (𝑦𝑋 → (𝑥 = -𝐴𝑥 ∈ ℝ))
65rexlimiv 3165 . . . 4 (∃𝑦𝑋 𝑥 = -𝐴𝑥 ∈ ℝ)
76abssi 3818 . . 3 {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ⊆ ℝ
81, 7eqsstri 3776 . 2 𝑅 ⊆ ℝ
9 infcvg.3 . . . . . 6 𝑍𝑋
10 eqid 2760 . . . . . 6 -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
1110nfth 1876 . . . . . . 7 𝑦-𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴
12 csbeq1a 3683 . . . . . . . . 9 (𝑦 = 𝑍𝐴 = 𝑍 / 𝑦𝐴)
1312negeqd 10467 . . . . . . . 8 (𝑦 = 𝑍 → -𝐴 = -𝑍 / 𝑦𝐴)
1413eqeq2d 2770 . . . . . . 7 (𝑦 = 𝑍 → (-𝑍 / 𝑦𝐴 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴))
1511, 14rspce 3444 . . . . . 6 ((𝑍𝑋 ∧ -𝑍 / 𝑦𝐴 = -𝑍 / 𝑦𝐴) → ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
169, 10, 15mp2an 710 . . . . 5 𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴
17 negex 10471 . . . . . 6 -𝑍 / 𝑦𝐴 ∈ V
18 nfcsb1v 3690 . . . . . . . . 9 𝑦𝑍 / 𝑦𝐴
1918nfneg 10469 . . . . . . . 8 𝑦-𝑍 / 𝑦𝐴
2019nfeq2 2918 . . . . . . 7 𝑦 𝑥 = -𝑍 / 𝑦𝐴
21 eqeq1 2764 . . . . . . 7 (𝑥 = -𝑍 / 𝑦𝐴 → (𝑥 = -𝐴 ↔ -𝑍 / 𝑦𝐴 = -𝐴))
2220, 21rexbid 3189 . . . . . 6 (𝑥 = -𝑍 / 𝑦𝐴 → (∃𝑦𝑋 𝑥 = -𝐴 ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴))
2317, 22elab 3490 . . . . 5 (-𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴} ↔ ∃𝑦𝑋 -𝑍 / 𝑦𝐴 = -𝐴)
2416, 23mpbir 221 . . . 4 -𝑍 / 𝑦𝐴 ∈ {𝑥 ∣ ∃𝑦𝑋 𝑥 = -𝐴}
2524, 1eleqtrri 2838 . . 3 -𝑍 / 𝑦𝐴𝑅
2625ne0ii 4066 . 2 𝑅 ≠ ∅
27 infcvg.4 . 2 𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧
288, 26, 273pm3.2i 1424 1 (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤𝑅 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  {cab 2746  wne 2932  wral 3050  wrex 3051  csb 3674  wss 3715  c0 4058   class class class wbr 4804  cr 10127  cle 10267  -cneg 10459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-ltxr 10271  df-sub 10460  df-neg 10461
This theorem is referenced by:  infcvgaux2i  14789
  Copyright terms: Public domain W3C validator