![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcvgaux1i | Structured version Visualization version GIF version |
Description: Auxiliary theorem for applications of supcvg 14787. Hypothesis for several supremum theorems. (Contributed by NM, 8-Feb-2008.) |
Ref | Expression |
---|---|
infcvg.1 | ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
infcvg.2 | ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) |
infcvg.3 | ⊢ 𝑍 ∈ 𝑋 |
infcvg.4 | ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
Ref | Expression |
---|---|
infcvgaux1i | ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcvg.1 | . . 3 ⊢ 𝑅 = {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} | |
2 | infcvg.2 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ) | |
3 | 2 | renegcld 10649 | . . . . . 6 ⊢ (𝑦 ∈ 𝑋 → -𝐴 ∈ ℝ) |
4 | eleq1 2827 | . . . . . 6 ⊢ (𝑥 = -𝐴 → (𝑥 ∈ ℝ ↔ -𝐴 ∈ ℝ)) | |
5 | 3, 4 | syl5ibrcom 237 | . . . . 5 ⊢ (𝑦 ∈ 𝑋 → (𝑥 = -𝐴 → 𝑥 ∈ ℝ)) |
6 | 5 | rexlimiv 3165 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 → 𝑥 ∈ ℝ) |
7 | 6 | abssi 3818 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} ⊆ ℝ |
8 | 1, 7 | eqsstri 3776 | . 2 ⊢ 𝑅 ⊆ ℝ |
9 | infcvg.3 | . . . . . 6 ⊢ 𝑍 ∈ 𝑋 | |
10 | eqid 2760 | . . . . . 6 ⊢ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴 | |
11 | 10 | nfth 1876 | . . . . . . 7 ⊢ Ⅎ𝑦-⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴 |
12 | csbeq1a 3683 | . . . . . . . . 9 ⊢ (𝑦 = 𝑍 → 𝐴 = ⦋𝑍 / 𝑦⦌𝐴) | |
13 | 12 | negeqd 10467 | . . . . . . . 8 ⊢ (𝑦 = 𝑍 → -𝐴 = -⦋𝑍 / 𝑦⦌𝐴) |
14 | 13 | eqeq2d 2770 | . . . . . . 7 ⊢ (𝑦 = 𝑍 → (-⦋𝑍 / 𝑦⦌𝐴 = -𝐴 ↔ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴)) |
15 | 11, 14 | rspce 3444 | . . . . . 6 ⊢ ((𝑍 ∈ 𝑋 ∧ -⦋𝑍 / 𝑦⦌𝐴 = -⦋𝑍 / 𝑦⦌𝐴) → ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴) |
16 | 9, 10, 15 | mp2an 710 | . . . . 5 ⊢ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴 |
17 | negex 10471 | . . . . . 6 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ V | |
18 | nfcsb1v 3690 | . . . . . . . . 9 ⊢ Ⅎ𝑦⦋𝑍 / 𝑦⦌𝐴 | |
19 | 18 | nfneg 10469 | . . . . . . . 8 ⊢ Ⅎ𝑦-⦋𝑍 / 𝑦⦌𝐴 |
20 | 19 | nfeq2 2918 | . . . . . . 7 ⊢ Ⅎ𝑦 𝑥 = -⦋𝑍 / 𝑦⦌𝐴 |
21 | eqeq1 2764 | . . . . . . 7 ⊢ (𝑥 = -⦋𝑍 / 𝑦⦌𝐴 → (𝑥 = -𝐴 ↔ -⦋𝑍 / 𝑦⦌𝐴 = -𝐴)) | |
22 | 20, 21 | rexbid 3189 | . . . . . 6 ⊢ (𝑥 = -⦋𝑍 / 𝑦⦌𝐴 → (∃𝑦 ∈ 𝑋 𝑥 = -𝐴 ↔ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴)) |
23 | 17, 22 | elab 3490 | . . . . 5 ⊢ (-⦋𝑍 / 𝑦⦌𝐴 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} ↔ ∃𝑦 ∈ 𝑋 -⦋𝑍 / 𝑦⦌𝐴 = -𝐴) |
24 | 16, 23 | mpbir 221 | . . . 4 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ {𝑥 ∣ ∃𝑦 ∈ 𝑋 𝑥 = -𝐴} |
25 | 24, 1 | eleqtrri 2838 | . . 3 ⊢ -⦋𝑍 / 𝑦⦌𝐴 ∈ 𝑅 |
26 | 25 | ne0ii 4066 | . 2 ⊢ 𝑅 ≠ ∅ |
27 | infcvg.4 | . 2 ⊢ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 | |
28 | 8, 26, 27 | 3pm3.2i 1424 | 1 ⊢ (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑤 ≤ 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {cab 2746 ≠ wne 2932 ∀wral 3050 ∃wrex 3051 ⦋csb 3674 ⊆ wss 3715 ∅c0 4058 class class class wbr 4804 ℝcr 10127 ≤ cle 10267 -cneg 10459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-ltxr 10271 df-sub 10460 df-neg 10461 |
This theorem is referenced by: infcvgaux2i 14789 |
Copyright terms: Public domain | W3C validator |