![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infcntss | Structured version Visualization version GIF version |
Description: Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
infcntss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
infcntss | ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcntss.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | domen 8136 | . 2 ⊢ (ω ≼ 𝐴 ↔ ∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
3 | ensym 8172 | . . . . 5 ⊢ (ω ≈ 𝑥 → 𝑥 ≈ ω) | |
4 | 3 | anim2i 594 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ ω ≈ 𝑥) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
5 | 4 | ancoms 468 | . . 3 ⊢ ((ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
6 | 5 | eximi 1911 | . 2 ⊢ (∃𝑥(ω ≈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
7 | 2, 6 | sylbi 207 | 1 ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1853 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 class class class wbr 4804 ωcom 7231 ≈ cen 8120 ≼ cdom 8121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-er 7913 df-en 8124 df-dom 8125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |