MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcdaabs Structured version   Visualization version   GIF version

Theorem infcdaabs 9220
Description: Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infcdaabs ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 +𝑐 𝐵) ≈ 𝐴)

Proof of Theorem infcdaabs
StepHypRef Expression
1 cdadom2 9201 . . . . . 6 (𝐵𝐴 → (𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 𝐴))
213ad2ant3 1130 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝐴 +𝑐 𝐴))
3 simp1 1131 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
4 xp2cda 9194 . . . . . 6 (𝐴 ∈ dom card → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴))
53, 4syl 17 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴))
62, 5breqtrrd 4832 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 2𝑜))
7 2onn 7889 . . . . . . 7 2𝑜 ∈ ω
8 nnsdom 8724 . . . . . . 7 (2𝑜 ∈ ω → 2𝑜 ≺ ω)
9 sdomdom 8149 . . . . . . 7 (2𝑜 ≺ ω → 2𝑜 ≼ ω)
107, 8, 9mp2b 10 . . . . . 6 2𝑜 ≼ ω
11 simp2 1132 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
12 domtr 8174 . . . . . 6 ((2𝑜 ≼ ω ∧ ω ≼ 𝐴) → 2𝑜𝐴)
1310, 11, 12sylancr 698 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 2𝑜𝐴)
14 xpdom2g 8221 . . . . 5 ((𝐴 ∈ dom card ∧ 2𝑜𝐴) → (𝐴 × 2𝑜) ≼ (𝐴 × 𝐴))
153, 13, 14syl2anc 696 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 2𝑜) ≼ (𝐴 × 𝐴))
16 domtr 8174 . . . 4 (((𝐴 +𝑐 𝐵) ≼ (𝐴 × 2𝑜) ∧ (𝐴 × 2𝑜) ≼ (𝐴 × 𝐴)) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐴))
176, 15, 16syl2anc 696 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐴))
18 infxpidm2 9030 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
19183adant3 1127 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
20 domentr 8180 . . 3 (((𝐴 +𝑐 𝐵) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝐴)
2117, 19, 20syl2anc 696 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 +𝑐 𝐵) ≼ 𝐴)
22 reldom 8127 . . . . 5 Rel ≼
2322brrelexi 5315 . . . 4 (𝐵𝐴𝐵 ∈ V)
24233ad2ant3 1130 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ V)
25 cdadom3 9202 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ V) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
263, 24, 25syl2anc 696 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴 +𝑐 𝐵))
27 sbth 8245 . 2 (((𝐴 +𝑐 𝐵) ≼ 𝐴𝐴 ≼ (𝐴 +𝑐 𝐵)) → (𝐴 +𝑐 𝐵) ≈ 𝐴)
2821, 26, 27syl2anc 696 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 +𝑐 𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  Vcvv 3340   class class class wbr 4804   × cxp 5264  dom cdm 5266  (class class class)co 6813  ωcom 7230  2𝑜c2o 7723  cen 8118  cdom 8119  csdm 8120  cardccrd 8951   +𝑐 ccda 9181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-oi 8580  df-card 8955  df-cda 9182
This theorem is referenced by:  infunabs  9221  infcda  9222  infdif  9223
  Copyright terms: Public domain W3C validator