![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lema | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8700 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lema | ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3958 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑓 ∩ 𝑥) = (𝐴 ∩ 𝑥)) | |
2 | 1 | sseq1d 3781 | . 2 ⊢ (𝑓 = 𝐴 → ((𝑓 ∩ 𝑥) ⊆ 𝐵 ↔ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
3 | inf3lem.4 | . . 3 ⊢ 𝐵 ∈ V | |
4 | sseq2 3776 | . . . . 5 ⊢ (𝑣 = 𝐵 → ((𝑓 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝐵)) | |
5 | 4 | rabbidv 3339 | . . . 4 ⊢ (𝑣 = 𝐵 → {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
6 | inf3lem.1 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
7 | sseq2 3776 | . . . . . . . 8 ⊢ (𝑦 = 𝑣 → ((𝑤 ∩ 𝑥) ⊆ 𝑦 ↔ (𝑤 ∩ 𝑥) ⊆ 𝑣)) | |
8 | 7 | rabbidv 3339 | . . . . . . 7 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣}) |
9 | ineq1 3958 | . . . . . . . . 9 ⊢ (𝑤 = 𝑓 → (𝑤 ∩ 𝑥) = (𝑓 ∩ 𝑥)) | |
10 | 9 | sseq1d 3781 | . . . . . . . 8 ⊢ (𝑤 = 𝑓 → ((𝑤 ∩ 𝑥) ⊆ 𝑣 ↔ (𝑓 ∩ 𝑥) ⊆ 𝑣)) |
11 | 10 | cbvrabv 3349 | . . . . . . 7 ⊢ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑣} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣} |
12 | 8, 11 | syl6eq 2821 | . . . . . 6 ⊢ (𝑦 = 𝑣 → {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦} = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
13 | 12 | cbvmptv 4885 | . . . . 5 ⊢ (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
14 | 6, 13 | eqtri 2793 | . . . 4 ⊢ 𝐺 = (𝑣 ∈ V ↦ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝑣}) |
15 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
16 | 15 | rabex 4947 | . . . 4 ⊢ {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} ∈ V |
17 | 5, 14, 16 | fvmpt 6426 | . . 3 ⊢ (𝐵 ∈ V → (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵}) |
18 | 3, 17 | ax-mp 5 | . 2 ⊢ (𝐺‘𝐵) = {𝑓 ∈ 𝑥 ∣ (𝑓 ∩ 𝑥) ⊆ 𝐵} |
19 | 2, 18 | elrab2 3518 | 1 ⊢ (𝐴 ∈ (𝐺‘𝐵) ↔ (𝐴 ∈ 𝑥 ∧ (𝐴 ∩ 𝑥) ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 ↦ cmpt 4864 ↾ cres 5252 ‘cfv 6030 ωcom 7216 reccrdg 7662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 |
This theorem is referenced by: inf3lemd 8692 inf3lem1 8693 inf3lem2 8694 inf3lem3 8695 |
Copyright terms: Public domain | W3C validator |