Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem3 Structured version   Visualization version   GIF version

Theorem inf3lem3 8565
 Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8570 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 8541. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . . 4 𝐴 ∈ V
4 inf3lem.4 . . . 4 𝐵 ∈ V
51, 2, 3, 4inf3lemd 8562 . . 3 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
61, 2, 3, 4inf3lem2 8564 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
76com12 32 . . 3 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
8 pssdifn0 3977 . . 3 (((𝐹𝐴) ⊆ 𝑥 ∧ (𝐹𝐴) ≠ 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅)
95, 7, 8syl6an 567 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅))
10 vex 3234 . . . . 5 𝑥 ∈ V
1110difexi 4842 . . . 4 (𝑥 ∖ (𝐹𝐴)) ∈ V
12 zfreg 8541 . . . 4 (((𝑥 ∖ (𝐹𝐴)) ∈ V ∧ (𝑥 ∖ (𝐹𝐴)) ≠ ∅) → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1311, 12mpan 706 . . 3 ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
14 eldifi 3765 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → 𝑣𝑥)
15 inssdif0 3980 . . . . . . . . . . 11 ((𝑣𝑥) ⊆ (𝐹𝐴) ↔ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1615biimpri 218 . . . . . . . . . 10 ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝑣𝑥) ⊆ (𝐹𝐴))
1714, 16anim12i 589 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
18 vex 3234 . . . . . . . . . 10 𝑣 ∈ V
19 fvex 6239 . . . . . . . . . 10 (𝐹𝐴) ∈ V
201, 2, 18, 19inf3lema 8559 . . . . . . . . 9 (𝑣 ∈ (𝐺‘(𝐹𝐴)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
2117, 20sylibr 224 . . . . . . . 8 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐺‘(𝐹𝐴)))
221, 2, 3, 4inf3lemc 8561 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹𝐴)))
2322eleq2d 2716 . . . . . . . 8 (𝐴 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝐴) ↔ 𝑣 ∈ (𝐺‘(𝐹𝐴))))
2421, 23syl5ibr 236 . . . . . . 7 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐹‘suc 𝐴)))
25 eldifn 3766 . . . . . . . . 9 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ¬ 𝑣 ∈ (𝐹𝐴))
2625adantr 480 . . . . . . . 8 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹𝐴))
2726a1i 11 . . . . . . 7 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹𝐴)))
2824, 27jcad 554 . . . . . 6 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴))))
29 eleq2 2719 . . . . . . . . 9 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹𝐴) ↔ 𝑣 ∈ (𝐹‘suc 𝐴)))
3029biimprd 238 . . . . . . . 8 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)))
31 iman 439 . . . . . . . 8 ((𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)) ↔ ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3230, 31sylib 208 . . . . . . 7 ((𝐹𝐴) = (𝐹‘suc 𝐴) → ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3332necon2ai 2852 . . . . . 6 ((𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))
3428, 33syl6 35 . . . . 5 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3534expd 451 . . . 4 (𝐴 ∈ ω → (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))))
3635rexlimdv 3059 . . 3 (𝐴 ∈ ω → (∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3713, 36syl5 34 . 2 (𝐴 ∈ ω → ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
389, 37syldc 48 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∃wrex 2942  {crab 2945  Vcvv 3231   ∖ cdif 3604   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ∪ cuni 4468   ↦ cmpt 4762   ↾ cres 5145  suc csuc 5763  ‘cfv 5926  ωcom 7107  reccrdg 7550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-reg 8538 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551 This theorem is referenced by:  inf3lem4  8566
 Copyright terms: Public domain W3C validator