MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem2 Structured version   Visualization version   GIF version

Theorem inf3lem2 8711
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8717 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem2
Dummy variables 𝑣 𝑢 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6348 . . . . 5 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
21neeq1d 3005 . . . 4 (𝑣 = ∅ → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘∅) ≠ 𝑥))
32imbi2d 330 . . 3 (𝑣 = ∅ → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)))
4 fveq2 6348 . . . . 5 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
54neeq1d 3005 . . . 4 (𝑣 = 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝑢) ≠ 𝑥))
65imbi2d 330 . . 3 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥)))
7 fveq2 6348 . . . . 5 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
87neeq1d 3005 . . . 4 (𝑣 = suc 𝑢 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹‘suc 𝑢) ≠ 𝑥))
98imbi2d 330 . . 3 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
10 fveq2 6348 . . . . 5 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1110neeq1d 3005 . . . 4 (𝑣 = 𝐴 → ((𝐹𝑣) ≠ 𝑥 ↔ (𝐹𝐴) ≠ 𝑥))
1211imbi2d 330 . . 3 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑣) ≠ 𝑥) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥)))
13 inf3lem.1 . . . . . . . 8 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
14 inf3lem.2 . . . . . . . 8 𝐹 = (rec(𝐺, ∅) ↾ ω)
15 inf3lem.3 . . . . . . . 8 𝐴 ∈ V
16 inf3lem.4 . . . . . . . 8 𝐵 ∈ V
1713, 14, 15, 16inf3lemb 8707 . . . . . . 7 (𝐹‘∅) = ∅
1817eqeq1i 2779 . . . . . 6 ((𝐹‘∅) = 𝑥 ↔ ∅ = 𝑥)
19 eqcom 2781 . . . . . 6 (∅ = 𝑥𝑥 = ∅)
2018, 19sylbb 210 . . . . 5 ((𝐹‘∅) = 𝑥𝑥 = ∅)
2120necon3i 2978 . . . 4 (𝑥 ≠ ∅ → (𝐹‘∅) ≠ 𝑥)
2221adantr 467 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘∅) ≠ 𝑥)
23 vex 3358 . . . . . . . . 9 𝑢 ∈ V
2413, 14, 23, 16inf3lemd 8709 . . . . . . . 8 (𝑢 ∈ ω → (𝐹𝑢) ⊆ 𝑥)
25 df-pss 3745 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 ↔ ((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥))
26 pssnel 4191 . . . . . . . . . 10 ((𝐹𝑢) ⊊ 𝑥 → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
2725, 26sylbir 226 . . . . . . . . 9 (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → ∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)))
28 ssel 3752 . . . . . . . . . . . . . . 15 (𝑥 𝑥 → (𝑣𝑥𝑣 𝑥))
29 eluni 4588 . . . . . . . . . . . . . . 15 (𝑣 𝑥 ↔ ∃𝑓(𝑣𝑓𝑓𝑥))
3028, 29syl6ib 242 . . . . . . . . . . . . . 14 (𝑥 𝑥 → (𝑣𝑥 → ∃𝑓(𝑣𝑓𝑓𝑥)))
31 eleq2 2842 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹‘suc 𝑢) = 𝑥 → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓𝑥))
3231biimparc 466 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑓 ∈ (𝐹‘suc 𝑢))
3313, 14, 23, 16inf3lemc 8708 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
3433eleq2d 2839 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) ↔ 𝑓 ∈ (𝐺‘(𝐹𝑢))))
35 elin 3954 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ (𝑓𝑥) ↔ (𝑣𝑓𝑣𝑥))
36 vex 3358 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑓 ∈ V
37 fvex 6359 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹𝑢) ∈ V
3813, 14, 36, 37inf3lema 8706 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑓𝑥 ∧ (𝑓𝑥) ⊆ (𝐹𝑢)))
3938simprbi 485 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑓𝑥) ⊆ (𝐹𝑢))
4039sseld 3757 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → (𝑣 ∈ (𝑓𝑥) → 𝑣 ∈ (𝐹𝑢)))
4135, 40syl5bir 234 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝐺‘(𝐹𝑢)) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢)))
4234, 41syl6bi 244 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ω → (𝑓 ∈ (𝐹‘suc 𝑢) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4332, 42syl5 34 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → ((𝑣𝑓𝑣𝑥) → 𝑣 ∈ (𝐹𝑢))))
4443com23 86 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ω → ((𝑣𝑓𝑣𝑥) → ((𝑓𝑥 ∧ (𝐹‘suc 𝑢) = 𝑥) → 𝑣 ∈ (𝐹𝑢))))
4544exp5c 432 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ω → (𝑣𝑓 → (𝑣𝑥 → (𝑓𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4645com34 91 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → (𝑣𝑓 → (𝑓𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))))
4746impd 397 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ((𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4847exlimdv 2016 . . . . . . . . . . . . . 14 (𝑢 ∈ ω → (∃𝑓(𝑣𝑓𝑓𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
4930, 48sylan9r 499 . . . . . . . . . . . . 13 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))))
5049pm2.43d 53 . . . . . . . . . . . 12 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢))))
51 id 22 . . . . . . . . . . . . 13 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → ((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)))
5251necon3bd 2960 . . . . . . . . . . . 12 (((𝐹‘suc 𝑢) = 𝑥𝑣 ∈ (𝐹𝑢)) → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥))
5350, 52syl6 35 . . . . . . . . . . 11 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (𝑣𝑥 → (¬ 𝑣 ∈ (𝐹𝑢) → (𝐹‘suc 𝑢) ≠ 𝑥)))
5453impd 397 . . . . . . . . . 10 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5554exlimdv 2016 . . . . . . . . 9 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (∃𝑣(𝑣𝑥 ∧ ¬ 𝑣 ∈ (𝐹𝑢)) → (𝐹‘suc 𝑢) ≠ 𝑥))
5627, 55syl5 34 . . . . . . . 8 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → (((𝐹𝑢) ⊆ 𝑥 ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5724, 56sylani 592 . . . . . . 7 ((𝑢 ∈ ω ∧ 𝑥 𝑥) → ((𝑢 ∈ ω ∧ (𝐹𝑢) ≠ 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥))
5857exp4b 418 . . . . . 6 (𝑢 ∈ ω → (𝑥 𝑥 → (𝑢 ∈ ω → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥))))
5958pm2.43a 54 . . . . 5 (𝑢 ∈ ω → (𝑥 𝑥 → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6059adantld 479 . . . 4 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝑢) ≠ 𝑥 → (𝐹‘suc 𝑢) ≠ 𝑥)))
6160a2d 29 . . 3 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝑢) ≠ 𝑥) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹‘suc 𝑢) ≠ 𝑥)))
623, 6, 9, 12, 22, 61finds 7260 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
6362com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1634  wex 1855  wcel 2148  wne 2946  {crab 3068  Vcvv 3355  cin 3728  wss 3729  wpss 3730  c0 4073   cuni 4585  cmpt 4876  cres 5265  suc csuc 5879  cfv 6042  ωcom 7233  reccrdg 7679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-om 7234  df-wrecs 7580  df-recs 7642  df-rdg 7680
This theorem is referenced by:  inf3lem3  8712
  Copyright terms: Public domain W3C validator