MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem1 Structured version   Visualization version   GIF version

Theorem inf3lem1 8700
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8707 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem1
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6353 . . 3 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
2 suceq 5951 . . . 4 (𝑣 = ∅ → suc 𝑣 = suc ∅)
32fveq2d 6357 . . 3 (𝑣 = ∅ → (𝐹‘suc 𝑣) = (𝐹‘suc ∅))
41, 3sseq12d 3775 . 2 (𝑣 = ∅ → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘∅) ⊆ (𝐹‘suc ∅)))
5 fveq2 6353 . . 3 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
6 suceq 5951 . . . 4 (𝑣 = 𝑢 → suc 𝑣 = suc 𝑢)
76fveq2d 6357 . . 3 (𝑣 = 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝑢))
85, 7sseq12d 3775 . 2 (𝑣 = 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)))
9 fveq2 6353 . . 3 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
10 suceq 5951 . . . 4 (𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢)
1110fveq2d 6357 . . 3 (𝑣 = suc 𝑢 → (𝐹‘suc 𝑣) = (𝐹‘suc suc 𝑢))
129, 11sseq12d 3775 . 2 (𝑣 = suc 𝑢 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
13 fveq2 6353 . . 3 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
14 suceq 5951 . . . 4 (𝑣 = 𝐴 → suc 𝑣 = suc 𝐴)
1514fveq2d 6357 . . 3 (𝑣 = 𝐴 → (𝐹‘suc 𝑣) = (𝐹‘suc 𝐴))
1613, 15sseq12d 3775 . 2 (𝑣 = 𝐴 → ((𝐹𝑣) ⊆ (𝐹‘suc 𝑣) ↔ (𝐹𝐴) ⊆ (𝐹‘suc 𝐴)))
17 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
18 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
19 inf3lem.3 . . . 4 𝐴 ∈ V
2017, 18, 19, 19inf3lemb 8697 . . 3 (𝐹‘∅) = ∅
21 0ss 4115 . . 3 ∅ ⊆ (𝐹‘suc ∅)
2220, 21eqsstri 3776 . 2 (𝐹‘∅) ⊆ (𝐹‘suc ∅)
23 sstr2 3751 . . . . . . . 8 ((𝑣𝑥) ⊆ (𝐹𝑢) → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2423com12 32 . . . . . . 7 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥) ⊆ (𝐹𝑢) → (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
2524anim2d 590 . . . . . 6 ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
26 vex 3343 . . . . . . . . . 10 𝑢 ∈ V
2717, 18, 26, 19inf3lemc 8698 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc 𝑢) = (𝐺‘(𝐹𝑢)))
2827eleq2d 2825 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹𝑢))))
29 vex 3343 . . . . . . . . 9 𝑣 ∈ V
30 fvex 6363 . . . . . . . . 9 (𝐹𝑢) ∈ V
3117, 18, 29, 30inf3lema 8696 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)))
3228, 31syl6bb 276 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢))))
33 peano2b 7247 . . . . . . . . . 10 (𝑢 ∈ ω ↔ suc 𝑢 ∈ ω)
3426sucex 7177 . . . . . . . . . . 11 suc 𝑢 ∈ V
3517, 18, 34, 19inf3lemc 8698 . . . . . . . . . 10 (suc 𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3633, 35sylbi 207 . . . . . . . . 9 (𝑢 ∈ ω → (𝐹‘suc suc 𝑢) = (𝐺‘(𝐹‘suc 𝑢)))
3736eleq2d 2825 . . . . . . . 8 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ 𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢))))
38 fvex 6363 . . . . . . . . 9 (𝐹‘suc 𝑢) ∈ V
3917, 18, 29, 38inf3lema 8696 . . . . . . . 8 (𝑣 ∈ (𝐺‘(𝐹‘suc 𝑢)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))
4037, 39syl6bb 276 . . . . . . 7 (𝑢 ∈ ω → (𝑣 ∈ (𝐹‘suc suc 𝑢) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢))))
4132, 40imbi12d 333 . . . . . 6 (𝑢 ∈ ω → ((𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)) ↔ ((𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝑢)) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹‘suc 𝑢)))))
4225, 41syl5ibr 236 . . . . 5 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢))))
4342imp 444 . . . 4 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝑣 ∈ (𝐹‘suc 𝑢) → 𝑣 ∈ (𝐹‘suc suc 𝑢)))
4443ssrdv 3750 . . 3 ((𝑢 ∈ ω ∧ (𝐹𝑢) ⊆ (𝐹‘suc 𝑢)) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢))
4544ex 449 . 2 (𝑢 ∈ ω → ((𝐹𝑢) ⊆ (𝐹‘suc 𝑢) → (𝐹‘suc 𝑢) ⊆ (𝐹‘suc suc 𝑢)))
464, 8, 12, 16, 22, 45finds 7258 1 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  cin 3714  wss 3715  c0 4058  cmpt 4881  cres 5268  suc csuc 5886  cfv 6049  ωcom 7231  reccrdg 7675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676
This theorem is referenced by:  inf3lem4  8703
  Copyright terms: Public domain W3C validator