MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf0 Structured version   Visualization version   GIF version

Theorem inf0 8503
Description: Our Axiom of Infinity derived from existence of omega. The proof shows that the especially contrived class "ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) " exists, is a subset of its union, and contains a given set 𝑥 (and thus is nonempty). Thus, it provides an example demonstrating that a set 𝑦 exists with the necessary properties demanded by ax-inf 8520. (Contributed by NM, 15-Oct-1996.)
Hypothesis
Ref Expression
inf0.1 ω ∈ V
Assertion
Ref Expression
inf0 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem inf0
Dummy variables 𝑣 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3198 . . . 4 𝑥 ∈ V
2 fr0g 7516 . . . 4 (𝑥 ∈ V → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) = 𝑥)
31, 2ax-mp 5 . . 3 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) = 𝑥
4 frfnom 7515 . . . 4 (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω
5 peano1 7070 . . . 4 ∅ ∈ ω
6 fnfvelrn 6342 . . . 4 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω ∧ ∅ ∈ ω) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
74, 5, 6mp2an 707 . . 3 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘∅) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
83, 7eqeltrri 2696 . 2 𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
9 fvelrnb 6230 . . . . 5 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧))
104, 9ax-mp 5 . . . 4 (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧)
11 fvex 6188 . . . . . . . . . 10 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V
1211sucid 5792 . . . . . . . . 9 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓)
1311sucex 6996 . . . . . . . . . 10 suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V
14 eqid 2620 . . . . . . . . . . 11 (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
15 suceq 5778 . . . . . . . . . . 11 (𝑧 = 𝑣 → suc 𝑧 = suc 𝑣)
16 suceq 5778 . . . . . . . . . . 11 (𝑧 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) → suc 𝑧 = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1714, 15, 16frsucmpt2 7520 . . . . . . . . . 10 ((𝑓 ∈ ω ∧ suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ V) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1813, 17mpan2 706 . . . . . . . . 9 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) = suc ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓))
1912, 18syl5eleqr 2706 . . . . . . . 8 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓))
20 eleq1 2687 . . . . . . . 8 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ↔ 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
2119, 20syl5ib 234 . . . . . . 7 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → 𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
22 peano2b 7066 . . . . . . . . 9 (𝑓 ∈ ω ↔ suc 𝑓 ∈ ω)
23 fnfvelrn 6342 . . . . . . . . . 10 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω ∧ suc 𝑓 ∈ ω) → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
244, 23mpan 705 . . . . . . . . 9 (suc 𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
2522, 24sylbi 207 . . . . . . . 8 (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
2625a1i 11 . . . . . . 7 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
2721, 26jcad 555 . . . . . 6 (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → (𝑓 ∈ ω → (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
28 fvex 6188 . . . . . . 7 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ V
29 eleq2 2688 . . . . . . . 8 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑧𝑤𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓)))
30 eleq1 2687 . . . . . . . 8 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → (𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ↔ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3129, 30anbi12d 746 . . . . . . 7 (𝑤 = ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) → ((𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) ↔ (𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
3228, 31spcev 3295 . . . . . 6 ((𝑧 ∈ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∧ ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘suc 𝑓) ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3327, 32syl6com 37 . . . . 5 (𝑓 ∈ ω → (((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
3433rexlimiv 3023 . . . 4 (∃𝑓 ∈ ω ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)‘𝑓) = 𝑧 → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3510, 34sylbi 207 . . 3 (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
3635ax-gen 1720 . 2 𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
37 fndm 5978 . . . . . 6 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = ω)
384, 37ax-mp 5 . . . . 5 dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) = ω
39 inf0.1 . . . . 5 ω ∈ V
4038, 39eqeltri 2695 . . . 4 dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V
41 fnfun 5976 . . . . 5 ((rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) Fn ω → Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))
424, 41ax-mp 5 . . . 4 Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)
43 funrnex 7118 . . . 4 (dom (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V → (Fun (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V))
4440, 42, 43mp2 9 . . 3 ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∈ V
45 eleq2 2688 . . . 4 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑥𝑦𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
46 eleq2 2688 . . . . . 6 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑧𝑦𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
47 eleq2 2688 . . . . . . . 8 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (𝑤𝑦𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))
4847anbi2d 739 . . . . . . 7 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧𝑤𝑤𝑦) ↔ (𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
4948exbidv 1848 . . . . . 6 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))
5046, 49imbi12d 334 . . . . 5 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))))
5150albidv 1847 . . . 4 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))))
5245, 51anbi12d 746 . . 3 (𝑦 = ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω))))))
5344, 52spcev 3295 . 2 ((𝑥 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) ∧ ∀𝑧(𝑧 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω) → ∃𝑤(𝑧𝑤𝑤 ∈ ran (rec((𝑣 ∈ V ↦ suc 𝑣), 𝑥) ↾ ω)))) → ∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))))
548, 36, 53mp2an 707 1 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1479   = wceq 1481  wex 1702  wcel 1988  wrex 2910  Vcvv 3195  c0 3907  cmpt 4720  dom cdm 5104  ran crn 5105  cres 5106  suc csuc 5713  Fun wfun 5870   Fn wfn 5871  cfv 5876  ωcom 7050  reccrdg 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491
This theorem is referenced by:  axinf  8526
  Copyright terms: Public domain W3C validator