![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex2 | Structured version Visualization version GIF version |
Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inex2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
inex2 | ⊢ (𝐵 ∩ 𝐴) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3946 | . 2 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
2 | inex2.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | inex1 4949 | . 2 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | 1, 3 | eqeltri 2833 | 1 ⊢ (𝐵 ∩ 𝐴) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2137 Vcvv 3338 ∩ cin 3712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-v 3340 df-in 3720 |
This theorem is referenced by: ssex 4952 wefrc 5258 hartogslem1 8610 infxpenlem 9024 dfac5lem5 9138 fin23lem12 9343 fpwwe2lem12 9653 cnso 15173 ressbas 16130 ressress 16138 rescabs 16692 mgpress 18698 pjfval 20250 tgdom 20982 distop 20999 ustfilxp 22215 elovolm 23441 elovolmr 23442 ovolmge0 23443 ovolgelb 23446 ovolunlem1a 23462 ovolunlem1 23463 ovoliunlem1 23468 ovoliunlem2 23469 ovolshftlem2 23476 ovolicc2 23488 ioombl1 23528 dyadmbl 23566 volsup2 23571 vitali 23579 itg1climres 23678 tayl0 24313 atomli 29548 ldgenpisyslem1 30533 reprinfz1 31007 aomclem6 38129 elinintrab 38383 isotone2 38847 ntrrn 38920 ntrf 38921 dssmapntrcls 38926 onfrALTlem3 39259 limcresiooub 40375 limcresioolb 40376 limsupval4 40527 sge0iunmptlemre 41133 ovolval2lem 41361 ovolval4lem2 41368 setrec2fun 42947 |
Copyright terms: Public domain | W3C validator |