![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inex1g | Structured version Visualization version GIF version |
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
inex1g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3958 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝐵) = (𝐴 ∩ 𝐵)) | |
2 | 1 | eleq1d 2835 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝐵) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
3 | vex 3354 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | inex1 4933 | . 2 ⊢ (𝑥 ∩ 𝐵) ∈ V |
5 | 2, 4 | vtoclg 3417 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∩ cin 3722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-in 3730 |
This theorem is referenced by: dmresexg 5562 onin 5897 offval 7051 offval3 7309 onsdominel 8265 ssenen 8290 inelfi 8480 fiin 8484 tskwe 8976 dfac8b 9054 ac10ct 9057 infpwfien 9085 fictb 9269 canthnum 9673 gruina 9842 ressinbas 16143 ressress 16146 qusin 16412 catcbas 16954 fpwipodrs 17372 psss 17422 gsumzres 18517 eltg 20982 eltg3 20987 ntrval 21061 restco 21189 restfpw 21204 ordtrest 21227 ordtrest2lem 21228 ordtrest2 21229 cnrmi 21385 restcnrm 21387 kgeni 21561 tsmsfbas 22151 eltsms 22156 tsmsres 22167 caussi 23314 causs 23315 elpwincl1 29695 disjdifprg2 29727 sigainb 30539 ldgenpisyslem1 30566 carsgclctun 30723 eulerpartlemgs2 30782 sseqval 30790 reprinrn 31036 bnj1177 31412 cvmsss2 31594 fnemeet2 32699 ontgval 32767 bj-discrmoore 33398 bj-diagval 33427 fin2so 33729 inex2ALTV 34448 inex3 34449 inxpex 34450 dfrefrels2 34605 dfsymrels2 34633 elrfi 37783 iunrelexp0 38520 fourierdlem71 40911 fourierdlem80 40920 sge0less 41126 sge0ssre 41131 carageniuncllem2 41256 dfrngc2 42500 rnghmsscmap2 42501 rngcbasALTV 42511 dfringc2 42546 rhmsscmap2 42547 rhmsscrnghm 42554 rngcresringcat 42558 ringcbasALTV 42574 srhmsubc 42604 fldc 42611 fldhmsubc 42612 rngcrescrhm 42613 srhmsubcALTV 42622 fldcALTV 42629 fldhmsubcALTV 42630 rngcrescrhmALTV 42631 offval0 42827 |
Copyright terms: Public domain | W3C validator |