![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | ineq12 3960 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2an 583 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∩ cin 3722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-in 3730 |
This theorem is referenced by: funprg 6083 funtpg 6084 funcnvpr 6091 funcnvqp 6093 fvun1 6411 fndmin 6467 offval 7051 ofrfval 7052 offval3 7309 fpar 7432 wfrlem4 7570 wfrlem4OLD 7571 fisn 8489 ixxin 12397 vdwmc 15889 fvcosymgeq 18056 cssincl 20249 inmbl 23530 iundisj2 23537 itg1addlem3 23685 fh1 28817 iundisj2f 29741 iundisj2fi 29896 br1cosscnvxrn 34566 offval0 42827 |
Copyright terms: Public domain | W3C validator |