![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq2 | Structured version Visualization version GIF version |
Description: Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3840 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
2 | incom 3838 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 3838 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2710 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∩ cin 3606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 |
This theorem is referenced by: ineq12 3842 ineq2i 3844 ineq2d 3847 uneqin 3911 intprg 4543 wefrc 5137 onfr 5801 onnseq 7486 qsdisj 7867 disjenex 8159 fiint 8278 elfiun 8377 dffi3 8378 cplem2 8791 dfac5 8989 kmlem2 9011 kmlem13 9022 kmlem14 9023 ackbij1lem16 9095 fin23lem12 9191 fin23lem19 9196 fin23lem33 9205 uzin2 14128 pgpfac1lem3 18522 pgpfac1lem5 18524 pgpfac1 18525 inopn 20752 basis1 20802 basis2 20803 baspartn 20806 fctop 20856 cctop 20858 ordtbaslem 21040 hausnei2 21205 cnhaus 21206 nrmsep 21209 isnrm2 21210 dishaus 21234 ordthauslem 21235 dfconn2 21270 nconnsubb 21274 finlocfin 21371 dissnlocfin 21380 locfindis 21381 kgeni 21388 pthaus 21489 txhaus 21498 xkohaus 21504 regr1lem 21590 fbasssin 21687 fbun 21691 fbunfip 21720 filconn 21734 isufil2 21759 ufileu 21770 filufint 21771 fmfnfmlem4 21808 fmfnfm 21809 fclsopni 21866 fclsbas 21872 fclsrest 21875 isfcf 21885 tsmsfbas 21978 ustincl 22058 ust0 22070 metreslem 22214 methaus 22372 qtopbaslem 22609 metnrmlem3 22711 ismbl 23340 shincl 28368 chincl 28486 chdmm1 28512 ledi 28527 cmbr 28571 cmbr3i 28587 cmbr3 28595 pjoml2 28598 stcltrlem1 29263 mdbr 29281 dmdbr 29286 cvmd 29323 cvexch 29361 sumdmdii 29402 mddmdin0i 29418 ofpreima2 29594 crefeq 30040 ldgenpisyslem1 30354 ldgenpisys 30357 inelsros 30369 diffiunisros 30370 elcarsg 30495 carsgclctunlem2 30509 carsgclctun 30511 ballotlemfval 30679 ballotlemgval 30713 cvmscbv 31366 cvmsdisj 31378 cvmsss2 31382 nepss 31725 tailfb 32497 bj-0int 33180 mblfinlem2 33577 lshpinN 34594 elrfi 37574 fipjust 38187 conrel1d 38272 ntrk0kbimka 38654 clsk3nimkb 38655 isotone2 38664 ntrclskb 38684 ntrclsk3 38685 ntrclsk13 38686 csbresgVD 39445 disjf1 39683 qinioo 40080 fouriersw 40766 nnfoctbdjlem 40990 meadjun 40997 caragenel 41030 |
Copyright terms: Public domain | W3C validator |