![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq1 3946 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1628 ∩ cin 3710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-v 3338 df-in 3718 |
This theorem is referenced by: in12 3963 inindi 3969 dfrab3 4041 dfif5 4242 disjpr2 4388 disjpr2OLD 4389 disjtpsn 4391 disjtp2 4392 resres 5563 imainrect 5729 predidm 5859 fresaun 6232 fresaunres2 6233 ssenen 8295 hartogslem1 8608 prinfzo0 12697 leiso 13431 f1oun2prg 13858 smumul 15413 setsfun 16091 setsfun0 16092 firest 16291 lsmdisj2r 18294 frgpuplem 18381 ltbwe 19670 tgrest 21161 fiuncmp 21405 ptclsg 21616 metnrmlem3 22861 mbfid 23598 ppi1 25085 cht1 25086 ppiub 25124 chdmj2i 28646 chjassi 28650 pjoml2i 28749 pjoml4i 28751 cmcmlem 28755 mayetes3i 28893 cvmdi 29488 atomli 29546 atabsi 29565 uniin1 29670 disjuniel 29713 imadifxp 29717 gtiso 29783 prsss 30267 ordtrest2NEW 30274 esumnul 30415 measinblem 30588 eulerpartlemt 30738 ballotlem2 30855 ballotlemfp1 30858 ballotlemfval0 30862 chtvalz 31012 mthmpps 31782 dffv5 32333 bj-sscon 33316 bj-discrmoore 33368 mblfinlem2 33756 ismblfin 33759 mbfposadd 33766 itg2addnclem2 33771 asindmre 33804 abeqin 34337 xrnres 34479 diophrw 37820 dnwech 38116 lmhmlnmsplit 38155 rp-fakeuninass 38360 iunrelexp0 38492 nznngen 39013 uzinico2 40288 limsup0 40425 limsupvaluz 40439 sge0sn 41095 31prm 42018 |
Copyright terms: Public domain | W3C validator |