![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq12i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
ineq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | ineq12 3944 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 ∩ cin 3706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-v 3334 df-in 3714 |
This theorem is referenced by: undir 4011 difundi 4014 difindir 4017 inrab 4034 inrab2 4035 elneldisj 4098 elneldisjOLD 4100 dfif4 4237 dfif5 4238 inxp 5402 resindi 5562 resindir 5563 rnin 5692 inimass 5699 predin 5856 funtp 6098 orduniss2 7190 offres 7320 fodomr 8268 epinid0 8662 cnvepnep 8668 wemapwe 8759 cotr3 13910 explecnv 14788 psssdm2 17408 ablfacrp 18657 cnfldfun 19952 pjfval2 20247 ofco2 20451 iundisj2 23509 clwwlknondisj 27252 lejdiri 28699 cmbr3i 28760 nonbooli 28811 5oai 28821 3oalem5 28826 mayetes3i 28889 mdexchi 29495 disjpreima 29696 disjxpin 29700 iundisj2f 29702 xppreima 29750 iundisj2fi 29857 xpinpreima 30253 xpinpreima2 30254 ordtcnvNEW 30267 pprodcnveq 32288 dfiota3 32328 bj-inrab 33221 ptrest 33713 ftc1anclem6 33795 xrnres3 34477 br2coss 34508 1cosscnvxrn 34540 refsymrels2 34626 dnwech 38112 fgraphopab 38282 onfrALTlem5 39251 onfrALTlem4 39252 onfrALTlem5VD 39612 onfrALTlem4VD 39613 disjxp1 39729 disjinfi 39871 |
Copyright terms: Public domain | W3C validator |