Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelsros Structured version   Visualization version   GIF version

Theorem inelsros 30369
 Description: A semi-ring of sets is closed under union. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypothesis
Ref Expression
issros.1 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
Assertion
Ref Expression
inelsros ((𝑆𝑁𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧
Allowed substitution hints:   𝐴(𝑡,𝑠)   𝐵(𝑥,𝑡,𝑠)   𝑆(𝑡)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem inelsros
StepHypRef Expression
1 simp2 1082 . . 3 ((𝑆𝑁𝐴𝑆𝐵𝑆) → 𝐴𝑆)
2 simp3 1083 . . 3 ((𝑆𝑁𝐴𝑆𝐵𝑆) → 𝐵𝑆)
3 issros.1 . . . . . 6 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
43issros 30366 . . . . 5 (𝑆𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
54simp3bi 1098 . . . 4 (𝑆𝑁 → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
653ad2ant1 1102 . . 3 ((𝑆𝑁𝐴𝑆𝐵𝑆) → ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))
7 ineq1 3840 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
87eleq1d 2715 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ 𝑆 ↔ (𝐴𝑦) ∈ 𝑆))
9 difeq1 3754 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
109eqeq1d 2653 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑦) = 𝑧 ↔ (𝐴𝑦) = 𝑧))
11103anbi3d 1445 . . . . . 6 (𝑥 = 𝐴 → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ (𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧)))
1211rexbidv 3081 . . . . 5 (𝑥 = 𝐴 → (∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧) ↔ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧)))
138, 12anbi12d 747 . . . 4 (𝑥 = 𝐴 → (((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)) ↔ ((𝐴𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧))))
14 ineq2 3841 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
1514eleq1d 2715 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ 𝑆 ↔ (𝐴𝐵) ∈ 𝑆))
16 difeq2 3755 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
1716eqeq1d 2653 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝑦) = 𝑧 ↔ (𝐴𝐵) = 𝑧))
18173anbi3d 1445 . . . . . 6 (𝑦 = 𝐵 → ((𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧) ↔ (𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
1918rexbidv 3081 . . . . 5 (𝑦 = 𝐵 → (∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧) ↔ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
2015, 19anbi12d 747 . . . 4 (𝑦 = 𝐵 → (((𝐴𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝑦) = 𝑧)) ↔ ((𝐴𝐵) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧))))
2113, 20rspc2va 3354 . . 3 (((𝐴𝑆𝐵𝑆) ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))) → ((𝐴𝐵) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
221, 2, 6, 21syl21anc 1365 . 2 ((𝑆𝑁𝐴𝑆𝐵𝑆) → ((𝐴𝐵) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝐴𝐵) = 𝑧)))
2322simpld 474 1 ((𝑆𝑁𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  {crab 2945   ∖ cdif 3604   ∩ cin 3606  ∅c0 3948  𝒫 cpw 4191  ∪ cuni 4468  Disj wdisj 4652  Fincfn 7997 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-in 3614  df-ss 3621  df-pw 4193 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator