![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inelfi | Structured version Visualization version GIF version |
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.) |
Ref | Expression |
---|---|
inelfi | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpwi 5064 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) | |
2 | 1 | 3adant1 1125 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) |
3 | prfi 8402 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ Fin) |
5 | 2, 4 | elind 3941 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin)) |
6 | intprg 4663 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
7 | 6 | 3adant1 1125 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
8 | 7 | eqcomd 2766 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) |
9 | inteq 4630 | . . . . 5 ⊢ (𝑝 = {𝐴, 𝐵} → ∩ 𝑝 = ∩ {𝐴, 𝐵}) | |
10 | 9 | eqeq2d 2770 | . . . 4 ⊢ (𝑝 = {𝐴, 𝐵} → ((𝐴 ∩ 𝐵) = ∩ 𝑝 ↔ (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵})) |
11 | 10 | rspcev 3449 | . . 3 ⊢ (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
12 | 5, 8, 11 | syl2anc 696 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
13 | inex1g 4953 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) | |
14 | 13 | 3ad2ant2 1129 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ V) |
15 | simp1 1131 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 ∈ 𝑉) | |
16 | elfi 8486 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) | |
17 | 14, 15, 16 | syl2anc 696 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) |
18 | 12, 17 | mpbird 247 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 Vcvv 3340 ∩ cin 3714 𝒫 cpw 4302 {cpr 4323 ∩ cint 4627 ‘cfv 6049 Fincfn 8123 ficfi 8483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-fin 8127 df-fi 8484 |
This theorem is referenced by: neiptoptop 21157 sigapildsyslem 30554 |
Copyright terms: Public domain | W3C validator |