Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelcarsg Structured version   Visualization version   GIF version

Theorem inelcarsg 30703
 Description: The Caratheodory measurable sets are closed under intersection. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
inelcarsg.1 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
inelcarsg.2 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
inelcarsg (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑀,𝑎   𝑂,𝑎   𝜑,𝑎   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑏   𝑂,𝑏   𝜑,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem inelcarsg
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difelcarsg.1 . . . . . 6 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
2 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
3 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
42, 3elcarsg 30697 . . . . . 6 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
51, 4mpbid 222 . . . . 5 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
65simpld 477 . . . 4 (𝜑𝐴𝑂)
7 ssinss1 3984 . . . 4 (𝐴𝑂 → (𝐴𝐵) ⊆ 𝑂)
86, 7syl 17 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑂)
9 iccssxr 12469 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
103adantr 472 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
11 simpr 479 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
1211elpwdifcl 29686 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂)
1310, 12ffvelrnd 6524 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ (0[,]+∞))
149, 13sseldi 3742 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ ℝ*)
1511elpwincl1 29685 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
1615elpwdifcl 29686 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂)
1710, 16ffvelrnd 6524 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ (0[,]+∞))
189, 17sseldi 3742 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ ℝ*)
1911elpwdifcl 29686 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2010, 19ffvelrnd 6524 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
219, 20sseldi 3742 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2218, 21xaddcld 12344 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))) ∈ ℝ*)
2311elpwincl1 29685 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂)
2410, 23ffvelrnd 6524 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ (0[,]+∞))
259, 24sseldi 3742 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ ℝ*)
26 indifundif 29684 . . . . . . . . . 10 (((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴)) = (𝑒 ∖ (𝐴𝐵))
2726fveq2i 6356 . . . . . . . . 9 (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) = (𝑀‘(𝑒 ∖ (𝐴𝐵)))
28 inelcarsg.1 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
29283expb 1114 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂)) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
3029ralrimivva 3109 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
3130adantr 472 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
32 uneq1 3903 . . . . . . . . . . . . . 14 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑎𝑏) = (((𝑒𝐴) ∖ 𝐵) ∪ 𝑏))
3332fveq2d 6357 . . . . . . . . . . . . 13 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑀‘(𝑎𝑏)) = (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)))
34 fveq2 6353 . . . . . . . . . . . . . 14 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑀𝑎) = (𝑀‘((𝑒𝐴) ∖ 𝐵)))
3534oveq1d 6829 . . . . . . . . . . . . 13 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → ((𝑀𝑎) +𝑒 (𝑀𝑏)) = ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)))
3633, 35breq12d 4817 . . . . . . . . . . . 12 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → ((𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) ↔ (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏))))
37 uneq2 3904 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝐴) → (((𝑒𝐴) ∖ 𝐵) ∪ 𝑏) = (((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴)))
3837fveq2d 6357 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝐴) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) = (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))))
39 fveq2 6353 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝐴) → (𝑀𝑏) = (𝑀‘(𝑒𝐴)))
4039oveq2d 6830 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝐴) → ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)) = ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4138, 40breq12d 4817 . . . . . . . . . . . 12 (𝑏 = (𝑒𝐴) → ((𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)) ↔ (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4236, 41rspc2v 3461 . . . . . . . . . . 11 ((((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂 ∧ (𝑒𝐴) ∈ 𝒫 𝑂) → (∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4342imp 444 . . . . . . . . . 10 (((((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂 ∧ (𝑒𝐴) ∈ 𝒫 𝑂) ∧ ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏))) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4416, 19, 31, 43syl21anc 1476 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4527, 44syl5eqbrr 4840 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
46 xleadd2a 12297 . . . . . . . 8 ((((𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ ℝ* ∧ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))) ∈ ℝ* ∧ (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ ℝ*) ∧ (𝑀‘(𝑒 ∖ (𝐴𝐵))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4714, 22, 25, 45, 46syl31anc 1480 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
48 inelcarsg.2 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
492, 3elcarsg 30697 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ (toCaraSiga‘𝑀) ↔ (𝐵𝑂 ∧ ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))))
5048, 49mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑂 ∧ ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓)))
5150simprd 482 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))
5251adantr 472 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))
53 ineq1 3950 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒𝐴) → (𝑓𝐵) = ((𝑒𝐴) ∩ 𝐵))
5453fveq2d 6357 . . . . . . . . . . . . . 14 (𝑓 = (𝑒𝐴) → (𝑀‘(𝑓𝐵)) = (𝑀‘((𝑒𝐴) ∩ 𝐵)))
55 difeq1 3864 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒𝐴) → (𝑓𝐵) = ((𝑒𝐴) ∖ 𝐵))
5655fveq2d 6357 . . . . . . . . . . . . . 14 (𝑓 = (𝑒𝐴) → (𝑀‘(𝑓𝐵)) = (𝑀‘((𝑒𝐴) ∖ 𝐵)))
5754, 56oveq12d 6832 . . . . . . . . . . . . 13 (𝑓 = (𝑒𝐴) → ((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))))
58 fveq2 6353 . . . . . . . . . . . . 13 (𝑓 = (𝑒𝐴) → (𝑀𝑓) = (𝑀‘(𝑒𝐴)))
5957, 58eqeq12d 2775 . . . . . . . . . . . 12 (𝑓 = (𝑒𝐴) → (((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) ↔ ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6059adantl 473 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑓 = (𝑒𝐴)) → (((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) ↔ ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6115, 60rspcdv 3452 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) → ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6252, 61mpd 15 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴)))
6362oveq1d 6829 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
6415elpwincl1 29685 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝐴) ∩ 𝐵) ∈ 𝒫 𝑂)
6510, 64ffvelrnd 6524 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∩ 𝐵)) ∈ (0[,]+∞))
66 xrge0addass 30020 . . . . . . . . . 10 (((𝑀‘((𝑒𝐴) ∩ 𝐵)) ∈ (0[,]+∞) ∧ (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ (0[,]+∞) ∧ (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞)) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
6765, 17, 20, 66syl3anc 1477 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
68 inass 3966 . . . . . . . . . . 11 ((𝑒𝐴) ∩ 𝐵) = (𝑒 ∩ (𝐴𝐵))
6968fveq2i 6356 . . . . . . . . . 10 (𝑀‘((𝑒𝐴) ∩ 𝐵)) = (𝑀‘(𝑒 ∩ (𝐴𝐵)))
7069oveq1i 6824 . . . . . . . . 9 ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
7167, 70syl6eq 2810 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
725simprd 482 . . . . . . . . 9 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
7372r19.21bi 3070 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
7463, 71, 733eqtr3d 2802 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) = (𝑀𝑒))
7547, 74breqtrd 4830 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒))
76 inundif 4190 . . . . . . . 8 ((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵))) = 𝑒
7776fveq2i 6356 . . . . . . 7 (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒)
78 uneq1 3903 . . . . . . . . . . . 12 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑎𝑏) = ((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏))
7978fveq2d 6357 . . . . . . . . . . 11 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑀‘(𝑎𝑏)) = (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)))
80 fveq2 6353 . . . . . . . . . . . 12 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑀𝑎) = (𝑀‘(𝑒 ∩ (𝐴𝐵))))
8180oveq1d 6829 . . . . . . . . . . 11 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → ((𝑀𝑎) +𝑒 (𝑀𝑏)) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)))
8279, 81breq12d 4817 . . . . . . . . . 10 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → ((𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) ↔ (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏))))
83 uneq2 3904 . . . . . . . . . . . 12 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏) = ((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵))))
8483fveq2d 6357 . . . . . . . . . . 11 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) = (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))))
85 fveq2 6353 . . . . . . . . . . . 12 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → (𝑀𝑏) = (𝑀‘(𝑒 ∖ (𝐴𝐵))))
8685oveq2d 6830 . . . . . . . . . . 11 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
8784, 86breq12d 4817 . . . . . . . . . 10 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)) ↔ (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
8882, 87rspc2v 3461 . . . . . . . . 9 (((𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂 ∧ (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂) → (∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
8988imp 444 . . . . . . . 8 ((((𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂 ∧ (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂) ∧ ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏))) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9023, 12, 31, 89syl21anc 1476 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9177, 90syl5eqbrr 4840 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9275, 91jca 555 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
9325, 14xaddcld 12344 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ∈ ℝ*)
943ffvelrnda 6523 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
959, 94sseldi 3742 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
96 xrletri3 12198 . . . . . 6 ((((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))))
9793, 95, 96syl2anc 696 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))))
9892, 97mpbird 247 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))
9998ralrimiva 3104 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))
1008, 99jca 555 . 2 (𝜑 → ((𝐴𝐵) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒)))
1012, 3elcarsg 30697 . 2 (𝜑 → ((𝐴𝐵) ∈ (toCaraSiga‘𝑀) ↔ ((𝐴𝐵) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))))
102100, 101mpbird 247 1 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050   ∖ cdif 3712   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  𝒫 cpw 4302   class class class wbr 4804  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  0cc0 10148  +∞cpnf 10283  ℝ*cxr 10285   ≤ cle 10287   +𝑒 cxad 12157  [,]cicc 12391  toCaraSigaccarsg 30693 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-xadd 12160  df-icc 12395  df-carsg 30694 This theorem is referenced by:  unelcarsg  30704  difelcarsg2  30705
 Copyright terms: Public domain W3C validator