![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indv | Structured version Visualization version GIF version |
Description: Value of the indicator function generator with domain 𝑂. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
Ref | Expression |
---|---|
indv | ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ind 30413 | . . 3 ⊢ 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))))) |
3 | pweq 4301 | . . . 4 ⊢ (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂) | |
4 | mpteq1 4872 | . . . 4 ⊢ (𝑜 = 𝑂 → (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | |
5 | 3, 4 | mpteq12dv 4868 | . . 3 ⊢ (𝑜 = 𝑂 → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
6 | 5 | adantl 467 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝑜 = 𝑂) → (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
7 | elex 3364 | . 2 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ V) | |
8 | pwexg 4981 | . . 3 ⊢ (𝑂 ∈ V → 𝒫 𝑂 ∈ V) | |
9 | mptexg 6631 | . . 3 ⊢ (𝒫 𝑂 ∈ V → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) | |
10 | 7, 8, 9 | 3syl 18 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) ∈ V) |
11 | 2, 6, 7, 10 | fvmptd 6432 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ifcif 4226 𝒫 cpw 4298 ↦ cmpt 4864 ‘cfv 6030 0cc0 10142 1c1 10143 𝟭cind 30412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ind 30413 |
This theorem is referenced by: indval 30415 indf1o 30426 |
Copyright terms: Public domain | W3C validator |