Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inductionexd Structured version   Visualization version   GIF version

Theorem inductionexd 38955
Description: Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.)
Assertion
Ref Expression
inductionexd (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))

Proof of Theorem inductionexd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6821 . . . 4 (𝑘 = 1 → (4↑𝑘) = (4↑1))
21oveq1d 6828 . . 3 (𝑘 = 1 → ((4↑𝑘) + 5) = ((4↑1) + 5))
32breq2d 4816 . 2 (𝑘 = 1 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑1) + 5)))
4 oveq2 6821 . . . 4 (𝑘 = 𝑛 → (4↑𝑘) = (4↑𝑛))
54oveq1d 6828 . . 3 (𝑘 = 𝑛 → ((4↑𝑘) + 5) = ((4↑𝑛) + 5))
65breq2d 4816 . 2 (𝑘 = 𝑛 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑛) + 5)))
7 oveq2 6821 . . . 4 (𝑘 = (𝑛 + 1) → (4↑𝑘) = (4↑(𝑛 + 1)))
87oveq1d 6828 . . 3 (𝑘 = (𝑛 + 1) → ((4↑𝑘) + 5) = ((4↑(𝑛 + 1)) + 5))
98breq2d 4816 . 2 (𝑘 = (𝑛 + 1) → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑(𝑛 + 1)) + 5)))
10 oveq2 6821 . . . 4 (𝑘 = 𝑁 → (4↑𝑘) = (4↑𝑁))
1110oveq1d 6828 . . 3 (𝑘 = 𝑁 → ((4↑𝑘) + 5) = ((4↑𝑁) + 5))
1211breq2d 4816 . 2 (𝑘 = 𝑁 → (3 ∥ ((4↑𝑘) + 5) ↔ 3 ∥ ((4↑𝑁) + 5)))
13 3z 11602 . . . 4 3 ∈ ℤ
14 4z 11603 . . . . . 6 4 ∈ ℤ
15 1nn0 11500 . . . . . 6 1 ∈ ℕ0
16 zexpcl 13069 . . . . . 6 ((4 ∈ ℤ ∧ 1 ∈ ℕ0) → (4↑1) ∈ ℤ)
1714, 15, 16mp2an 710 . . . . 5 (4↑1) ∈ ℤ
18 5nn 11380 . . . . . 6 5 ∈ ℕ
1918nnzi 11593 . . . . 5 5 ∈ ℤ
20 zaddcl 11609 . . . . 5 (((4↑1) ∈ ℤ ∧ 5 ∈ ℤ) → ((4↑1) + 5) ∈ ℤ)
2117, 19, 20mp2an 710 . . . 4 ((4↑1) + 5) ∈ ℤ
2213, 13, 213pm3.2i 1424 . . 3 (3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ)
23 3t3e9 11372 . . . 4 (3 · 3) = 9
24 4nn0 11503 . . . . . . 7 4 ∈ ℕ0
2524numexp1 15983 . . . . . 6 (4↑1) = 4
2625oveq1i 6823 . . . . 5 ((4↑1) + 5) = (4 + 5)
27 5cn 11292 . . . . . 6 5 ∈ ℂ
28 4cn 11290 . . . . . 6 4 ∈ ℂ
29 5p4e9 11359 . . . . . 6 (5 + 4) = 9
3027, 28, 29addcomli 10420 . . . . 5 (4 + 5) = 9
3126, 30eqtri 2782 . . . 4 ((4↑1) + 5) = 9
3223, 31eqtr4i 2785 . . 3 (3 · 3) = ((4↑1) + 5)
33 dvds0lem 15194 . . 3 (((3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ((4↑1) + 5) ∈ ℤ) ∧ (3 · 3) = ((4↑1) + 5)) → 3 ∥ ((4↑1) + 5))
3422, 32, 33mp2an 710 . 2 3 ∥ ((4↑1) + 5)
3513a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∈ ℤ)
36 4nn 11379 . . . . . . . . . . 11 4 ∈ ℕ
3736a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 4 ∈ ℕ)
38 nnnn0 11491 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3937, 38nnexpcld 13224 . . . . . . . . 9 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℕ)
4039nnzd 11673 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℤ)
4140adantr 472 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (4↑𝑛) ∈ ℤ)
4219a1i 11 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 5 ∈ ℤ)
4341, 42zaddcld 11678 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑𝑛) + 5) ∈ ℤ)
4414a1i 11 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 4 ∈ ℤ)
45 simpr 479 . . . . . 6 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑𝑛) + 5))
4635, 43, 44, 45dvdsmultr1d 15222 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (((4↑𝑛) + 5) · 4))
47 dvdsmul1 15205 . . . . . . 7 ((3 ∈ ℤ ∧ 5 ∈ ℤ) → 3 ∥ (3 · 5))
4813, 19, 47mp2an 710 . . . . . 6 3 ∥ (3 · 5)
4948a1i 11 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ (3 · 5))
5043, 44zmulcld 11680 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (((4↑𝑛) + 5) · 4) ∈ ℤ)
5135, 42zmulcld 11680 . . . . 5 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → (3 · 5) ∈ ℤ)
5235, 46, 49, 50, 51dvds2subd 15219 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((((4↑𝑛) + 5) · 4) − (3 · 5)))
5339nncnd 11228 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑𝑛) ∈ ℂ)
5427a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 ∈ ℂ)
5528a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 4 ∈ ℂ)
5653, 54, 55adddird 10257 . . . . . . 7 (𝑛 ∈ ℕ → (((4↑𝑛) + 5) · 4) = (((4↑𝑛) · 4) + (5 · 4)))
5756oveq1d 6828 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − 15) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
58 3cn 11287 . . . . . . . . 9 3 ∈ ℂ
59 5t3e15 11827 . . . . . . . . 9 (5 · 3) = 15
6027, 58, 59mulcomli 10239 . . . . . . . 8 (3 · 5) = 15
6160a1i 11 . . . . . . 7 (𝑛 ∈ ℕ → (3 · 5) = 15)
6261oveq2d 6829 . . . . . 6 (𝑛 ∈ ℕ → ((((4↑𝑛) + 5) · 4) − (3 · 5)) = ((((4↑𝑛) + 5) · 4) − 15))
6355, 38expp1d 13203 . . . . . . . 8 (𝑛 ∈ ℕ → (4↑(𝑛 + 1)) = ((4↑𝑛) · 4))
64 ax-1cn 10186 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
65 3p1e4 11345 . . . . . . . . . . . . . . . 16 (3 + 1) = 4
6658, 64, 65addcomli 10420 . . . . . . . . . . . . . . 15 (1 + 3) = 4
6766eqcomi 2769 . . . . . . . . . . . . . 14 4 = (1 + 3)
6867oveq1i 6823 . . . . . . . . . . . . 13 (4 − 3) = ((1 + 3) − 3)
6964, 58pncan3oi 10489 . . . . . . . . . . . . 13 ((1 + 3) − 3) = 1
7068, 69eqtri 2782 . . . . . . . . . . . 12 (4 − 3) = 1
7170oveq2i 6824 . . . . . . . . . . 11 (5 · (4 − 3)) = (5 · 1)
7227, 28, 58subdii 10671 . . . . . . . . . . 11 (5 · (4 − 3)) = ((5 · 4) − (5 · 3))
7327mulid1i 10234 . . . . . . . . . . 11 (5 · 1) = 5
7471, 72, 733eqtr3ri 2791 . . . . . . . . . 10 5 = ((5 · 4) − (5 · 3))
7559eqcomi 2769 . . . . . . . . . . 11 15 = (5 · 3)
7675oveq2i 6824 . . . . . . . . . 10 ((5 · 4) − 15) = ((5 · 4) − (5 · 3))
7774, 76eqtr4i 2785 . . . . . . . . 9 5 = ((5 · 4) − 15)
7877a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 5 = ((5 · 4) − 15))
7963, 78oveq12d 6831 . . . . . . 7 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8053, 55mulcld 10252 . . . . . . . 8 (𝑛 ∈ ℕ → ((4↑𝑛) · 4) ∈ ℂ)
8154, 55mulcld 10252 . . . . . . . 8 (𝑛 ∈ ℕ → (5 · 4) ∈ ℂ)
82 5nn0 11504 . . . . . . . . . . 11 5 ∈ ℕ0
8315, 82deccl 11704 . . . . . . . . . 10 15 ∈ ℕ0
8483nn0cni 11496 . . . . . . . . 9 15 ∈ ℂ
8584a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 15 ∈ ℂ)
8680, 81, 85addsubassd 10604 . . . . . . 7 (𝑛 ∈ ℕ → ((((4↑𝑛) · 4) + (5 · 4)) − 15) = (((4↑𝑛) · 4) + ((5 · 4) − 15)))
8779, 86eqtr4d 2797 . . . . . 6 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) · 4) + (5 · 4)) − 15))
8857, 62, 873eqtr4rd 2805 . . . . 5 (𝑛 ∈ ℕ → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
8988adantr 472 . . . 4 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → ((4↑(𝑛 + 1)) + 5) = ((((4↑𝑛) + 5) · 4) − (3 · 5)))
9052, 89breqtrrd 4832 . . 3 ((𝑛 ∈ ℕ ∧ 3 ∥ ((4↑𝑛) + 5)) → 3 ∥ ((4↑(𝑛 + 1)) + 5))
9190ex 449 . 2 (𝑛 ∈ ℕ → (3 ∥ ((4↑𝑛) + 5) → 3 ∥ ((4↑(𝑛 + 1)) + 5)))
923, 6, 9, 12, 34, 91nnind 11230 1 (𝑁 ∈ ℕ → 3 ∥ ((4↑𝑁) + 5))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  (class class class)co 6813  cc 10126  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458  cn 11212  3c3 11263  4c4 11264  5c5 11265  9c9 11269  0cn0 11484  cz 11569  cdc 11685  cexp 13054  cdvds 15182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-seq 12996  df-exp 13055  df-dvds 15183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator