Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsumin Structured version   Visualization version   GIF version

Theorem indsumin 30385
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
indsumin.1 (𝜑𝑂𝑉)
indsumin.2 (𝜑𝐴 ∈ Fin)
indsumin.3 (𝜑𝐴𝑂)
indsumin.4 (𝜑𝐵𝑂)
indsumin.5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
indsumin (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem indsumin
StepHypRef Expression
1 inindif 29652 . . . 4 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
21a1i 11 . . 3 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
3 inundif 4182 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
43eqcomi 2761 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
54a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
6 indsumin.2 . . 3 (𝜑𝐴 ∈ Fin)
7 pr01ssre 29871 . . . . . 6 {0, 1} ⊆ ℝ
8 ax-resscn 10177 . . . . . 6 ℝ ⊆ ℂ
97, 8sstri 3745 . . . . 5 {0, 1} ⊆ ℂ
10 indsumin.1 . . . . . . . 8 (𝜑𝑂𝑉)
11 indsumin.4 . . . . . . . 8 (𝜑𝐵𝑂)
12 indf 30378 . . . . . . . 8 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1310, 11, 12syl2anc 696 . . . . . . 7 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1413adantr 472 . . . . . 6 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
15 indsumin.3 . . . . . . 7 (𝜑𝐴𝑂)
1615sselda 3736 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑂)
1714, 16ffvelrnd 6515 . . . . 5 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ {0, 1})
189, 17sseldi 3734 . . . 4 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ ℂ)
19 indsumin.5 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2018, 19mulcld 10244 . . 3 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) ∈ ℂ)
212, 5, 6, 20fsumsplit 14662 . 2 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)))
2210adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
2311adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
24 inss2 3969 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
2524a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
2625sselda 3736 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐵)
27 ind1 30380 . . . . . . 7 ((𝑂𝑉𝐵𝑂𝑘𝐵) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2822, 23, 26, 27syl3anc 1473 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2928oveq1d 6820 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (1 · 𝐶))
30 inss1 3968 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
3130a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3231sselda 3736 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
3332, 19syldan 488 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
3433mulid2d 10242 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → (1 · 𝐶) = 𝐶)
3529, 34eqtrd 2786 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 𝐶)
3635sumeq2dv 14624 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
3710adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
3811adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
3915ssdifd 3881 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ (𝑂𝐵))
4039sselda 3736 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘 ∈ (𝑂𝐵))
41 ind0 30381 . . . . . . . 8 ((𝑂𝑉𝐵𝑂𝑘 ∈ (𝑂𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4237, 38, 40, 41syl3anc 1473 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4342oveq1d 6820 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (0 · 𝐶))
44 difssd 3873 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
4544sselda 3736 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
4645, 19syldan 488 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
4746mul02d 10418 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (0 · 𝐶) = 0)
4843, 47eqtrd 2786 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
4948sumeq2dv 14624 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)0)
50 diffi 8349 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
516, 50syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
52 sumz 14644 . . . . . 6 (((𝐴𝐵) ⊆ (ℤ‘0) ∨ (𝐴𝐵) ∈ Fin) → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5352olcs 409 . . . . 5 ((𝐴𝐵) ∈ Fin → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5451, 53syl 17 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5549, 54eqtrd 2786 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
5636, 55oveq12d 6823 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)) = (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0))
57 infi 8341 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
586, 57syl 17 . . . 4 (𝜑 → (𝐴𝐵) ∈ Fin)
5958, 33fsumcl 14655 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
6059addid1d 10420 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
6121, 56, 603eqtrd 2790 1 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  cdif 3704  cun 3705  cin 3706  wss 3707  c0 4050  {cpr 4315  wf 6037  cfv 6041  (class class class)co 6805  Fincfn 8113  cc 10118  cr 10119  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125  cuz 11871  Σcsu 14607  𝟭cind 30373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-ind 30374
This theorem is referenced by:  breprexpnat  31013
  Copyright terms: Public domain W3C validator