Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsum Structured version   Visualization version   GIF version

Theorem indsum 30414
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Hypotheses
Ref Expression
indsum.1 (𝜑𝑂 ∈ Fin)
indsum.2 (𝜑𝐴𝑂)
indsum.3 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
indsum (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑂   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem indsum
StepHypRef Expression
1 indsum.2 . . 3 (𝜑𝐴𝑂)
21sselda 3745 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝑂)
3 pr01ssre 29901 . . . . . . 7 {0, 1} ⊆ ℝ
4 indsum.1 . . . . . . . . 9 (𝜑𝑂 ∈ Fin)
5 indf 30408 . . . . . . . . 9 ((𝑂 ∈ Fin ∧ 𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
64, 1, 5syl2anc 696 . . . . . . . 8 (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
76ffvelrnda 6524 . . . . . . 7 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1})
83, 7sseldi 3743 . . . . . 6 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ)
98recnd 10281 . . . . 5 ((𝜑𝑥𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ)
10 indsum.3 . . . . 5 ((𝜑𝑥𝑂) → 𝐵 ∈ ℂ)
119, 10mulcld 10273 . . . 4 ((𝜑𝑥𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
122, 11syldan 488 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ)
134adantr 472 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑂 ∈ Fin)
141adantr 472 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝐴𝑂)
15 simpr 479 . . . . . 6 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥 ∈ (𝑂𝐴))
16 ind0 30411 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1713, 14, 15, 16syl3anc 1477 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0)
1817oveq1d 6830 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵))
19 difssd 3882 . . . . . 6 (𝜑 → (𝑂𝐴) ⊆ 𝑂)
2019sselda 3745 . . . . 5 ((𝜑𝑥 ∈ (𝑂𝐴)) → 𝑥𝑂)
2110mul02d 10447 . . . . 5 ((𝜑𝑥𝑂) → (0 · 𝐵) = 0)
2220, 21syldan 488 . . . 4 ((𝜑𝑥 ∈ (𝑂𝐴)) → (0 · 𝐵) = 0)
2318, 22eqtrd 2795 . . 3 ((𝜑𝑥 ∈ (𝑂𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0)
241, 12, 23, 4fsumss 14676 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵))
254adantr 472 . . . . . 6 ((𝜑𝑥𝐴) → 𝑂 ∈ Fin)
261adantr 472 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴𝑂)
27 simpr 479 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
28 ind1 30410 . . . . . 6 ((𝑂 ∈ Fin ∧ 𝐴𝑂𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
2925, 26, 27, 28syl3anc 1477 . . . . 5 ((𝜑𝑥𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1)
3029oveq1d 6830 . . . 4 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵))
3110mulid2d 10271 . . . . 5 ((𝜑𝑥𝑂) → (1 · 𝐵) = 𝐵)
322, 31syldan 488 . . . 4 ((𝜑𝑥𝐴) → (1 · 𝐵) = 𝐵)
3330, 32eqtrd 2795 . . 3 ((𝜑𝑥𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵)
3433sumeq2dv 14653 . 2 (𝜑 → Σ𝑥𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
3524, 34eqtr3d 2797 1 (𝜑 → Σ𝑥𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  cdif 3713  wss 3716  {cpr 4324  wf 6046  cfv 6050  (class class class)co 6815  Fincfn 8124  cc 10147  cr 10148  0cc0 10149  1c1 10150   · cmul 10154  Σcsu 14636  𝟭cind 30403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-fz 12541  df-fzo 12681  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-sum 14637  df-ind 30404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator