![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indsum | Structured version Visualization version GIF version |
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
indsum.1 | ⊢ (𝜑 → 𝑂 ∈ Fin) |
indsum.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
indsum.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
indsum | ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indsum.2 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
2 | 1 | sselda 3745 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝑂) |
3 | pr01ssre 29901 | . . . . . . 7 ⊢ {0, 1} ⊆ ℝ | |
4 | indsum.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ Fin) | |
5 | indf 30408 | . . . . . . . . 9 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
6 | 4, 1, 5 | syl2anc 696 | . . . . . . . 8 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
7 | 6 | ffvelrnda 6524 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ {0, 1}) |
8 | 3, 7 | sseldi 3743 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℝ) |
9 | 8 | recnd 10281 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑥) ∈ ℂ) |
10 | indsum.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → 𝐵 ∈ ℂ) | |
11 | 9, 10 | mulcld 10273 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
12 | 2, 11 | syldan 488 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) ∈ ℂ) |
13 | 4 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑂 ∈ Fin) |
14 | 1 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝐴 ⊆ 𝑂) |
15 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ (𝑂 ∖ 𝐴)) | |
16 | ind0 30411 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) | |
17 | 13, 14, 15, 16 | syl3anc 1477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 0) |
18 | 17 | oveq1d 6830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (0 · 𝐵)) |
19 | difssd 3882 | . . . . . 6 ⊢ (𝜑 → (𝑂 ∖ 𝐴) ⊆ 𝑂) | |
20 | 19 | sselda 3745 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → 𝑥 ∈ 𝑂) |
21 | 10 | mul02d 10447 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (0 · 𝐵) = 0) |
22 | 20, 21 | syldan 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → (0 · 𝐵) = 0) |
23 | 18, 22 | eqtrd 2795 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑂 ∖ 𝐴)) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 0) |
24 | 1, 12, 23, 4 | fsumss 14676 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵)) |
25 | 4 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑂 ∈ Fin) |
26 | 1 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝑂) |
27 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
28 | ind1 30410 | . . . . . 6 ⊢ ((𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) | |
29 | 25, 26, 27, 28 | syl3anc 1477 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐴)‘𝑥) = 1) |
30 | 29 | oveq1d 6830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = (1 · 𝐵)) |
31 | 10 | mulid2d 10271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (1 · 𝐵) = 𝐵) |
32 | 2, 31 | syldan 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (1 · 𝐵) = 𝐵) |
33 | 30, 32 | eqtrd 2795 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = 𝐵) |
34 | 33 | sumeq2dv 14653 | . 2 ⊢ (𝜑 → Σ𝑥 ∈ 𝐴 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
35 | 24, 34 | eqtr3d 2797 | 1 ⊢ (𝜑 → Σ𝑥 ∈ 𝑂 ((((𝟭‘𝑂)‘𝐴)‘𝑥) · 𝐵) = Σ𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∖ cdif 3713 ⊆ wss 3716 {cpr 4324 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 Fincfn 8124 ℂcc 10147 ℝcr 10148 0cc0 10149 1c1 10150 · cmul 10154 Σcsu 14636 𝟭cind 30403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-clim 14439 df-sum 14637 df-ind 30404 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |