![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indstr | Structured version Visualization version GIF version |
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
Ref | Expression |
---|---|
indstr.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
indstr.2 | ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) |
Ref | Expression |
---|---|
indstr | ⊢ (𝑥 ∈ ℕ → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.24 944 | . . . . . 6 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) | |
2 | nnre 11065 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
3 | nnre 11065 | . . . . . . . . . . . . 13 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℝ) | |
4 | lenlt 10154 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥)) | |
5 | 2, 3, 4 | syl2an 493 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥)) |
6 | 5 | imbi2d 329 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥))) |
7 | con34b 305 | . . . . . . . . . . 11 ⊢ ((𝑦 < 𝑥 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝑦 < 𝑥)) | |
8 | 6, 7 | syl6bbr 278 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ (𝑦 < 𝑥 → 𝜓))) |
9 | 8 | ralbidva 3014 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦) ↔ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓))) |
10 | indstr.2 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) | |
11 | 9, 10 | sylbid 230 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦) → 𝜑)) |
12 | 11 | anim2d 588 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) → (¬ 𝜑 ∧ 𝜑))) |
13 | ancom 465 | . . . . . . 7 ⊢ ((¬ 𝜑 ∧ 𝜑) ↔ (𝜑 ∧ ¬ 𝜑)) | |
14 | 12, 13 | syl6ib 241 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → ((¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) → (𝜑 ∧ ¬ 𝜑))) |
15 | 1, 14 | mtoi 190 | . . . . 5 ⊢ (𝑥 ∈ ℕ → ¬ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦))) |
16 | 15 | nrex 3029 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦)) |
17 | indstr.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
18 | 17 | notbid 307 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
19 | 18 | nnwos 11793 | . . . 4 ⊢ (∃𝑥 ∈ ℕ ¬ 𝜑 → ∃𝑥 ∈ ℕ (¬ 𝜑 ∧ ∀𝑦 ∈ ℕ (¬ 𝜓 → 𝑥 ≤ 𝑦))) |
20 | 16, 19 | mto 188 | . . 3 ⊢ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑 |
21 | dfral2 3023 | . . 3 ⊢ (∀𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃𝑥 ∈ ℕ ¬ 𝜑) | |
22 | 20, 21 | mpbir 221 | . 2 ⊢ ∀𝑥 ∈ ℕ 𝜑 |
23 | 22 | rspec 2960 | 1 ⊢ (𝑥 ∈ ℕ → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 class class class wbr 4685 ℝcr 9973 < clt 10112 ≤ cle 10113 ℕcn 11058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 |
This theorem is referenced by: indstr2 11805 |
Copyright terms: Public domain | W3C validator |