![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version |
Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
indlcim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
indlcim.b | ⊢ 𝐵 = (Base‘𝐹) |
indlcim.c | ⊢ 𝐶 = (Base‘𝑇) |
indlcim.v | ⊢ · = ( ·𝑠 ‘𝑇) |
indlcim.n | ⊢ 𝑁 = (LSpan‘𝑇) |
indlcim.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓 · 𝐴))) |
indlcim.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
indlcim.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
indlcim.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
indlcim.a | ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) |
indlcim.l | ⊢ (𝜑 → 𝐴 LIndF 𝑇) |
indlcim.s | ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) |
Ref | Expression |
---|---|
indlcim | ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indlcim.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | indlcim.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
3 | indlcim.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
4 | indlcim.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑇) | |
5 | indlcim.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘𝑓 · 𝐴))) | |
6 | indlcim.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
7 | indlcim.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
8 | indlcim.r | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
9 | indlcim.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) | |
10 | fofn 6155 | . . . . 5 ⊢ (𝐴:𝐼–onto→𝐽 → 𝐴 Fn 𝐼) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
12 | indlcim.l | . . . . . 6 ⊢ (𝜑 → 𝐴 LIndF 𝑇) | |
13 | 3 | lindff 20202 | . . . . . 6 ⊢ ((𝐴 LIndF 𝑇 ∧ 𝑇 ∈ LMod) → 𝐴:dom 𝐴⟶𝐶) |
14 | 12, 6, 13 | syl2anc 694 | . . . . 5 ⊢ (𝜑 → 𝐴:dom 𝐴⟶𝐶) |
15 | frn 6091 | . . . . 5 ⊢ (𝐴:dom 𝐴⟶𝐶 → ran 𝐴 ⊆ 𝐶) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ 𝐶) |
17 | df-f 5930 | . . . 4 ⊢ (𝐴:𝐼⟶𝐶 ↔ (𝐴 Fn 𝐼 ∧ ran 𝐴 ⊆ 𝐶)) | |
18 | 11, 16, 17 | sylanbrc 699 | . . 3 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 18 | frlmup1 20185 | . 2 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 18 | islindf5 20226 | . . . 4 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
21 | 12, 20 | mpbid 222 | . . 3 ⊢ (𝜑 → 𝐸:𝐵–1-1→𝐶) |
22 | indlcim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑇) | |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 18, 22 | frlmup3 20187 | . . . 4 ⊢ (𝜑 → ran 𝐸 = (𝑁‘ran 𝐴)) |
24 | forn 6156 | . . . . . 6 ⊢ (𝐴:𝐼–onto→𝐽 → ran 𝐴 = 𝐽) | |
25 | 9, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐴 = 𝐽) |
26 | 25 | fveq2d 6233 | . . . 4 ⊢ (𝜑 → (𝑁‘ran 𝐴) = (𝑁‘𝐽)) |
27 | indlcim.s | . . . 4 ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) | |
28 | 23, 26, 27 | 3eqtrd 2689 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝐶) |
29 | dff1o5 6184 | . . 3 ⊢ (𝐸:𝐵–1-1-onto→𝐶 ↔ (𝐸:𝐵–1-1→𝐶 ∧ ran 𝐸 = 𝐶)) | |
30 | 21, 28, 29 | sylanbrc 699 | . 2 ⊢ (𝜑 → 𝐸:𝐵–1-1-onto→𝐶) |
31 | 2, 3 | islmim 19110 | . 2 ⊢ (𝐸 ∈ (𝐹 LMIso 𝑇) ↔ (𝐸 ∈ (𝐹 LMHom 𝑇) ∧ 𝐸:𝐵–1-1-onto→𝐶)) |
32 | 19, 30, 31 | sylanbrc 699 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 class class class wbr 4685 ↦ cmpt 4762 dom cdm 5143 ran crn 5144 Fn wfn 5921 ⟶wf 5922 –1-1→wf1 5923 –onto→wfo 5924 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 ∘𝑓 cof 6937 Basecbs 15904 Scalarcsca 15991 ·𝑠 cvsca 15992 Σg cgsu 16148 LModclmod 18911 LSpanclspn 19019 LMHom clmhm 19067 LMIso clmim 19068 freeLMod cfrlm 20138 LIndF clindf 20191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-subrg 18826 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lmhm 19070 df-lmim 19071 df-lbs 19123 df-sra 19220 df-rgmod 19221 df-nzr 19306 df-dsmm 20124 df-frlm 20139 df-uvc 20170 df-lindf 20193 |
This theorem is referenced by: lbslcic 20228 |
Copyright terms: Public domain | W3C validator |