Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif1 Structured version   Visualization version   GIF version

Theorem indif1 4018
 Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)

Proof of Theorem indif1
StepHypRef Expression
1 indif2 4017 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐵𝐴) ∖ 𝐶)
2 incom 3954 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
3 incom 3954 . . 3 (𝐵𝐴) = (𝐴𝐵)
43difeq1i 3873 . 2 ((𝐵𝐴) ∖ 𝐶) = ((𝐴𝐵) ∖ 𝐶)
51, 2, 43eqtr3i 2800 1 ((𝐴𝐶) ∩ 𝐵) = ((𝐴𝐵) ∖ 𝐶)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1630   ∖ cdif 3718   ∩ cin 3720 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rab 3069  df-v 3351  df-dif 3724  df-in 3728 This theorem is referenced by:  resdifcom  5556  resdmdfsn  5586  hartogslem1  8602  fpwwe2  9666  leiso  13444  basdif0  20977  tgdif0  21016  kqdisj  21755  trufil  21933  difininv  29686  gtiso  29812  dfon4  32331
 Copyright terms: Public domain W3C validator