MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif Structured version   Visualization version   GIF version

Theorem indif 4012
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem indif
StepHypRef Expression
1 dfin4 4010 . 2 (𝐴 ∩ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
2 dfin4 4010 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
32difeq2i 3868 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
4 difin 4004 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
51, 3, 43eqtr2i 2788 1 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  cdif 3712  cin 3714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-in 3722  df-ss 3729
This theorem is referenced by:  resdif  6319  kmlem11  9194  psgndiflemB  20168
  Copyright terms: Public domain W3C validator