![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > incsmflem | Structured version Visualization version GIF version |
Description: A non decreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
incsmflem.x | ⊢ Ⅎ𝑥𝜑 |
incsmflem.y | ⊢ Ⅎ𝑦𝜑 |
incsmflem.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
incsmflem.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
incsmflem.i | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
incsmflem.j | ⊢ 𝐽 = (topGen‘ran (,)) |
incsmflem.b | ⊢ 𝐵 = (SalGen‘𝐽) |
incsmflem.r | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
incsmflem.l | ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} |
incsmflem.c | ⊢ 𝐶 = sup(𝑌, ℝ*, < ) |
incsmflem.d | ⊢ 𝐷 = (-∞(,)𝐶) |
incsmflem.e | ⊢ 𝐸 = (-∞(,]𝐶) |
Ref | Expression |
---|---|
incsmflem | ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incsmflem.e | . . . 4 ⊢ 𝐸 = (-∞(,]𝐶) | |
2 | mnfxr 10134 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
3 | 2 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → -∞ ∈ ℝ*) |
4 | incsmflem.l | . . . . . . . . 9 ⊢ 𝑌 = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} | |
5 | ssrab2 3720 | . . . . . . . . 9 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} ⊆ 𝐴 | |
6 | 4, 5 | eqsstri 3668 | . . . . . . . 8 ⊢ 𝑌 ⊆ 𝐴 |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ⊆ 𝐴) |
8 | incsmflem.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
9 | 7, 8 | sstrd 3646 | . . . . . 6 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
10 | 9 | sselda 3636 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ ℝ) |
11 | incsmflem.j | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
12 | incsmflem.b | . . . . 5 ⊢ 𝐵 = (SalGen‘𝐽) | |
13 | 3, 10, 11, 12 | iocborel 40892 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → (-∞(,]𝐶) ∈ 𝐵) |
14 | 1, 13 | syl5eqel 2734 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐸 ∈ 𝐵) |
15 | incsmflem.x | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
16 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
17 | nfrab1 3152 | . . . . . . 7 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝑅} | |
18 | 4, 17 | nfcxfr 2791 | . . . . . 6 ⊢ Ⅎ𝑥𝑌 |
19 | 16, 18 | nfel 2806 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝑌 |
20 | 15, 19 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐶 ∈ 𝑌) |
21 | incsmflem.y | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
22 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑦 𝐶 ∈ 𝑌 | |
23 | 21, 22 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ 𝐶 ∈ 𝑌) |
24 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
25 | incsmflem.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
26 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
27 | incsmflem.i | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) | |
28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
29 | incsmflem.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
30 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
31 | incsmflem.c | . . . 4 ⊢ 𝐶 = sup(𝑌, ℝ*, < ) | |
32 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝐶 ∈ 𝑌) | |
33 | 20, 23, 24, 26, 28, 30, 4, 31, 32, 1 | pimincfltioc 41247 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → 𝑌 = (𝐸 ∩ 𝐴)) |
34 | ineq1 3840 | . . . . 5 ⊢ (𝑏 = 𝐸 → (𝑏 ∩ 𝐴) = (𝐸 ∩ 𝐴)) | |
35 | 34 | eqeq2d 2661 | . . . 4 ⊢ (𝑏 = 𝐸 → (𝑌 = (𝑏 ∩ 𝐴) ↔ 𝑌 = (𝐸 ∩ 𝐴))) |
36 | 35 | rspcev 3340 | . . 3 ⊢ ((𝐸 ∈ 𝐵 ∧ 𝑌 = (𝐸 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
37 | 14, 33, 36 | syl2anc 694 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
38 | incsmflem.d | . . . . . 6 ⊢ 𝐷 = (-∞(,)𝐶) | |
39 | 11, 12 | iooborel 40887 | . . . . . 6 ⊢ (-∞(,)𝐶) ∈ 𝐵 |
40 | 38, 39 | eqeltri 2726 | . . . . 5 ⊢ 𝐷 ∈ 𝐵 |
41 | 40 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝐵) |
42 | 41 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐷 ∈ 𝐵) |
43 | 19 | nfn 1824 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝐶 ∈ 𝑌 |
44 | 15, 43 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
45 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝐶 ∈ 𝑌 | |
46 | 21, 45 | nfan 1868 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ 𝐶 ∈ 𝑌) |
47 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐴 ⊆ ℝ) |
48 | 25 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝐹:𝐴⟶ℝ*) |
49 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
50 | 29 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑅 ∈ ℝ*) |
51 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ¬ 𝐶 ∈ 𝑌) | |
52 | 44, 46, 47, 48, 49, 50, 4, 31, 51, 38 | pimincfltioo 41249 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → 𝑌 = (𝐷 ∩ 𝐴)) |
53 | ineq1 3840 | . . . . 5 ⊢ (𝑏 = 𝐷 → (𝑏 ∩ 𝐴) = (𝐷 ∩ 𝐴)) | |
54 | 53 | eqeq2d 2661 | . . . 4 ⊢ (𝑏 = 𝐷 → (𝑌 = (𝑏 ∩ 𝐴) ↔ 𝑌 = (𝐷 ∩ 𝐴))) |
55 | 54 | rspcev 3340 | . . 3 ⊢ ((𝐷 ∈ 𝐵 ∧ 𝑌 = (𝐷 ∩ 𝐴)) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
56 | 42, 52, 55 | syl2anc 694 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ 𝑌) → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
57 | 37, 56 | pm2.61dan 849 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝐵 𝑌 = (𝑏 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 {crab 2945 ∩ cin 3606 ⊆ wss 3607 class class class wbr 4685 ran crn 5144 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 supcsup 8387 ℝcr 9973 -∞cmnf 10110 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 (,)cioo 12213 (,]cioc 12214 topGenctg 16145 SalGencsalgen 40850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-card 8803 df-acn 8806 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-ioo 12217 df-ioc 12218 df-fl 12633 df-topgen 16151 df-top 20747 df-bases 20798 df-salg 40847 df-salgen 40851 |
This theorem is referenced by: incsmf 41272 |
Copyright terms: Public domain | W3C validator |