Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsmf Structured version   Visualization version   GIF version

Theorem incsmf 41468
Description: A real-valued, non-decreasing function is Borel measurable. Proposition 121D (c) of [Fremlin1] p. 36 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
incsmf.a (𝜑𝐴 ⊆ ℝ)
incsmf.f (𝜑𝐹:𝐴⟶ℝ)
incsmf.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
incsmf.j 𝐽 = (topGen‘ran (,))
incsmf.b 𝐵 = (SalGen‘𝐽)
Assertion
Ref Expression
incsmf (𝜑𝐹 ∈ (SMblFn‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem incsmf
Dummy variables 𝑏 𝑤 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1995 . 2 𝑎𝜑
2 incsmf.j . . . . 5 𝐽 = (topGen‘ran (,))
3 retop 22785 . . . . 5 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2846 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 incsmf.b . . 3 𝐵 = (SalGen‘𝐽)
75, 6salgencld 41081 . 2 (𝜑𝐵 ∈ SAlg)
8 incsmf.a . . 3 (𝜑𝐴 ⊆ ℝ)
95, 6unisalgen2 41086 . . . 4 (𝜑 𝐵 = 𝐽)
102unieqi 4584 . . . . 5 𝐽 = (topGen‘ran (,))
1110a1i 11 . . . 4 (𝜑 𝐽 = (topGen‘ran (,)))
12 uniretop 22786 . . . . . 6 ℝ = (topGen‘ran (,))
1312eqcomi 2780 . . . . 5 (topGen‘ran (,)) = ℝ
1413a1i 11 . . . 4 (𝜑 (topGen‘ran (,)) = ℝ)
159, 11, 143eqtrrd 2810 . . 3 (𝜑 → ℝ = 𝐵)
168, 15sseqtrd 3790 . 2 (𝜑𝐴 𝐵)
17 incsmf.f . 2 (𝜑𝐹:𝐴⟶ℝ)
18 nfv 1995 . . . 4 𝑤(𝜑𝑎 ∈ ℝ)
19 nfv 1995 . . . 4 𝑧(𝜑𝑎 ∈ ℝ)
208adantr 466 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐴 ⊆ ℝ)
2117frexr 40117 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2221adantr 466 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
23 incsmf.i . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
24 breq1 4790 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
25 fveq2 6333 . . . . . . . . 9 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
2625breq1d 4797 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑦)))
2724, 26imbi12d 333 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ (𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦))))
28 breq2 4791 . . . . . . . 8 (𝑦 = 𝑧 → (𝑤𝑦𝑤𝑧))
29 fveq2 6333 . . . . . . . . 9 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
3029breq2d 4799 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹𝑤) ≤ (𝐹𝑦) ↔ (𝐹𝑤) ≤ (𝐹𝑧)))
3128, 30imbi12d 333 . . . . . . 7 (𝑦 = 𝑧 → ((𝑤𝑦 → (𝐹𝑤) ≤ (𝐹𝑦)) ↔ (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧))))
3227, 31cbvral2v 3328 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)) ↔ ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3323, 32sylib 208 . . . . 5 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
3433adantr 466 . . . 4 ((𝜑𝑎 ∈ ℝ) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
35 rexr 10291 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635adantl 467 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
3725breq1d 4797 . . . . 5 (𝑥 = 𝑤 → ((𝐹𝑥) < 𝑎 ↔ (𝐹𝑤) < 𝑎))
3837cbvrabv 3349 . . . 4 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = {𝑤𝐴 ∣ (𝐹𝑤) < 𝑎}
39 eqid 2771 . . . 4 sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ) = sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )
40 eqid 2771 . . . 4 (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,)sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
41 eqid 2771 . . . 4 (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < )) = (-∞(,]sup({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎}, ℝ*, < ))
4218, 19, 20, 22, 34, 2, 6, 36, 38, 39, 40, 41incsmflem 41467 . . 3 ((𝜑𝑎 ∈ ℝ) → ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴))
43 reex 10233 . . . . . . 7 ℝ ∈ V
4443a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4544, 8ssexd 4940 . . . . 5 (𝜑𝐴 ∈ V)
46 elrest 16296 . . . . 5 ((𝐵 ∈ SAlg ∧ 𝐴 ∈ V) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
477, 45, 46syl2anc 573 . . . 4 (𝜑 → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4847adantr 466 . . 3 ((𝜑𝑎 ∈ ℝ) → ({𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴) ↔ ∃𝑏𝐵 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = (𝑏𝐴)))
4942, 48mpbird 247 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝐵t 𝐴))
501, 7, 16, 17, 49issmfd 41461 1 (𝜑𝐹 ∈ (SMblFn‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  cin 3722  wss 3723   cuni 4575   class class class wbr 4787  ran crn 5251  wf 6026  cfv 6030  (class class class)co 6796  supcsup 8506  cr 10141  -∞cmnf 10278  *cxr 10279   < clt 10280  cle 10281  (,)cioo 12380  (,]cioc 12381  t crest 16289  topGenctg 16306  Topctop 20918  SAlgcsalg 41042  SalGencsalgen 41046  SMblFncsmblfn 41426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-card 8969  df-acn 8972  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-ioo 12384  df-ioc 12385  df-ico 12386  df-fl 12801  df-rest 16291  df-topgen 16312  df-top 20919  df-bases 20971  df-salg 41043  df-salgen 41047  df-smblfn 41427
This theorem is referenced by:  smfid  41478
  Copyright terms: Public domain W3C validator