MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  incexc2 Structured version   Visualization version   GIF version

Theorem incexc2 14551
Description: The inclusion/exclusion principle for counting the elements of a finite union of finite sets. (Contributed by Mario Carneiro, 7-Aug-2017.)
Assertion
Ref Expression
incexc2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (#‘ 𝐴) = Σ𝑛 ∈ (1...(#‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘ 𝑠)))
Distinct variable group:   𝑘,𝑛,𝑠,𝐴

Proof of Theorem incexc2
StepHypRef Expression
1 incexc 14550 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (#‘ 𝐴) = Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)))
2 hashcl 13130 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0)
32ad2antrr 761 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (#‘𝐴) ∈ ℕ0)
43nn0zd 11465 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (#‘𝐴) ∈ ℤ)
5 simpl 473 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6 elpwi 4159 . . . . . . . . . . . 12 (𝑘 ∈ 𝒫 𝐴𝑘𝐴)
7 ssdomg 7986 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝑘𝐴𝑘𝐴))
87imp 445 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘𝐴)
95, 6, 8syl2an 494 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘𝐴)
10 hashdomi 13152 . . . . . . . . . . 11 (𝑘𝐴 → (#‘𝑘) ≤ (#‘𝐴))
119, 10syl 17 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (#‘𝑘) ≤ (#‘𝐴))
12 fznn 12393 . . . . . . . . . . 11 ((#‘𝐴) ∈ ℤ → ((#‘𝑘) ∈ (1...(#‘𝐴)) ↔ ((#‘𝑘) ∈ ℕ ∧ (#‘𝑘) ≤ (#‘𝐴))))
1312rbaibd 948 . . . . . . . . . 10 (((#‘𝐴) ∈ ℤ ∧ (#‘𝑘) ≤ (#‘𝐴)) → ((#‘𝑘) ∈ (1...(#‘𝐴)) ↔ (#‘𝑘) ∈ ℕ))
144, 11, 13syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((#‘𝑘) ∈ (1...(#‘𝐴)) ↔ (#‘𝑘) ∈ ℕ))
15 ssfi 8165 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝑘𝐴) → 𝑘 ∈ Fin)
165, 6, 15syl2an 494 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → 𝑘 ∈ Fin)
17 hashnncl 13140 . . . . . . . . . 10 (𝑘 ∈ Fin → ((#‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1816, 17syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → ((#‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
1914, 18bitr2d 269 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (𝑘 ≠ ∅ ↔ (#‘𝑘) ∈ (1...(#‘𝐴))))
20 df-ne 2792 . . . . . . . 8 (𝑘 ≠ ∅ ↔ ¬ 𝑘 = ∅)
21 risset 3058 . . . . . . . 8 ((#‘𝑘) ∈ (1...(#‘𝐴)) ↔ ∃𝑛 ∈ (1...(#‘𝐴))𝑛 = (#‘𝑘))
2219, 20, 213bitr3g 302 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 = ∅ ↔ ∃𝑛 ∈ (1...(#‘𝐴))𝑛 = (#‘𝑘)))
23 velsn 4184 . . . . . . . 8 (𝑘 ∈ {∅} ↔ 𝑘 = ∅)
2423notbii 310 . . . . . . 7 𝑘 ∈ {∅} ↔ ¬ 𝑘 = ∅)
25 eqcom 2627 . . . . . . . 8 ((#‘𝑘) = 𝑛𝑛 = (#‘𝑘))
2625rexbii 3037 . . . . . . 7 (∃𝑛 ∈ (1...(#‘𝐴))(#‘𝑘) = 𝑛 ↔ ∃𝑛 ∈ (1...(#‘𝐴))𝑛 = (#‘𝑘))
2722, 24, 263bitr4g 303 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑘 ∈ 𝒫 𝐴) → (¬ 𝑘 ∈ {∅} ↔ ∃𝑛 ∈ (1...(#‘𝐴))(#‘𝑘) = 𝑛))
2827rabbidva 3183 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(#‘𝐴))(#‘𝑘) = 𝑛})
29 dfdif2 3576 . . . . 5 (𝒫 𝐴 ∖ {∅}) = {𝑘 ∈ 𝒫 𝐴 ∣ ¬ 𝑘 ∈ {∅}}
30 iunrab 4558 . . . . 5 𝑛 ∈ (1...(#‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} = {𝑘 ∈ 𝒫 𝐴 ∣ ∃𝑛 ∈ (1...(#‘𝐴))(#‘𝑘) = 𝑛}
3128, 29, 303eqtr4g 2679 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (𝒫 𝐴 ∖ {∅}) = 𝑛 ∈ (1...(#‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛})
3231sumeq1d 14412 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 ∈ (𝒫 𝐴 ∖ {∅})((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) = Σ𝑠 𝑛 ∈ (1...(#‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)))
331, 32eqtrd 2654 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (#‘ 𝐴) = Σ𝑠 𝑛 ∈ (1...(#‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)))
34 fzfid 12755 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (1...(#‘𝐴)) ∈ Fin)
35 simpll 789 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝐴 ∈ Fin)
36 pwfi 8246 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
3735, 36sylib 208 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝒫 𝐴 ∈ Fin)
38 ssrab2 3679 . . . 4 {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ⊆ 𝒫 𝐴
39 ssfi 8165 . . . 4 ((𝒫 𝐴 ∈ Fin ∧ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ⊆ 𝒫 𝐴) → {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ∈ Fin)
4037, 38, 39sylancl 693 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ∈ Fin)
41 fveq2 6178 . . . . . . . . . 10 (𝑘 = 𝑠 → (#‘𝑘) = (#‘𝑠))
4241eqeq1d 2622 . . . . . . . . 9 (𝑘 = 𝑠 → ((#‘𝑘) = 𝑛 ↔ (#‘𝑠) = 𝑛))
4342elrab 3357 . . . . . . . 8 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ↔ (𝑠 ∈ 𝒫 𝐴 ∧ (#‘𝑠) = 𝑛))
4443simprbi 480 . . . . . . 7 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} → (#‘𝑠) = 𝑛)
4544adantl 482 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → (#‘𝑠) = 𝑛)
4645ralrimiva 2963 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘𝑠) = 𝑛)
4746ralrimiva 2963 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∀𝑛 ∈ (1...(#‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘𝑠) = 𝑛)
48 invdisj 4629 . . . 4 (∀𝑛 ∈ (1...(#‘𝐴))∀𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘𝑠) = 𝑛Disj 𝑛 ∈ (1...(#‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛})
4947, 48syl 17 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Disj 𝑛 ∈ (1...(#‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛})
5045oveq1d 6650 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → ((#‘𝑠) − 1) = (𝑛 − 1))
5150oveq2d 6651 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → (-1↑((#‘𝑠) − 1)) = (-1↑(𝑛 − 1)))
5251oveq1d 6650 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) = ((-1↑(𝑛 − 1)) · (#‘ 𝑠)))
53 1cnd 10041 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 1 ∈ ℂ)
5453negcld 10364 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → -1 ∈ ℂ)
55 elfznn 12355 . . . . . . . . . 10 (𝑛 ∈ (1...(#‘𝐴)) → 𝑛 ∈ ℕ)
5655adantl 482 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → 𝑛 ∈ ℕ)
57 nnm1nn0 11319 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
5856, 57syl 17 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (𝑛 − 1) ∈ ℕ0)
5954, 58expcld 12991 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (-1↑(𝑛 − 1)) ∈ ℂ)
6059adantr 481 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → (-1↑(𝑛 − 1)) ∈ ℂ)
61 unifi 8240 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
6261ad2antrr 761 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
6356adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑛 ∈ ℕ)
6445, 63eqeltrd 2699 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → (#‘𝑠) ∈ ℕ)
6535adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝐴 ∈ Fin)
66 elrabi 3353 . . . . . . . . . . . . . . . 16 (𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} → 𝑠 ∈ 𝒫 𝐴)
6766adantl 482 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠 ∈ 𝒫 𝐴)
68 elpwi 4159 . . . . . . . . . . . . . . 15 (𝑠 ∈ 𝒫 𝐴𝑠𝐴)
6967, 68syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠𝐴)
70 ssfi 8165 . . . . . . . . . . . . . 14 ((𝐴 ∈ Fin ∧ 𝑠𝐴) → 𝑠 ∈ Fin)
7165, 69, 70syl2anc 692 . . . . . . . . . . . . 13 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
72 hashnncl 13140 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → ((#‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7371, 72syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → ((#‘𝑠) ∈ ℕ ↔ 𝑠 ≠ ∅))
7464, 73mpbid 222 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠 ≠ ∅)
75 intssuni 4490 . . . . . . . . . . 11 (𝑠 ≠ ∅ → 𝑠 𝑠)
7674, 75syl 17 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠 𝑠)
7769unissd 4453 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠 𝐴)
7876, 77sstrd 3605 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠 𝐴)
79 ssfi 8165 . . . . . . . . 9 (( 𝐴 ∈ Fin ∧ 𝑠 𝐴) → 𝑠 ∈ Fin)
8062, 78, 79syl2anc 692 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → 𝑠 ∈ Fin)
81 hashcl 13130 . . . . . . . 8 ( 𝑠 ∈ Fin → (#‘ 𝑠) ∈ ℕ0)
8280, 81syl 17 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → (#‘ 𝑠) ∈ ℕ0)
8382nn0cnd 11338 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → (#‘ 𝑠) ∈ ℂ)
8460, 83mulcld 10045 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → ((-1↑(𝑛 − 1)) · (#‘ 𝑠)) ∈ ℂ)
8552, 84eqeltrd 2699 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛}) → ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) ∈ ℂ)
8685anasss 678 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ (𝑛 ∈ (1...(#‘𝐴)) ∧ 𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛})) → ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) ∈ ℂ)
8734, 40, 49, 86fsumiun 14534 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑠 𝑛 ∈ (1...(#‘𝐴)){𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) = Σ𝑛 ∈ (1...(#‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)))
8852sumeq2dv 14414 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (#‘ 𝑠)))
8940, 59, 83fsummulc2 14497 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘ 𝑠)) = Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑(𝑛 − 1)) · (#‘ 𝑠)))
9088, 89eqtr4d 2657 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) ∧ 𝑛 ∈ (1...(#‘𝐴))) → Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) = ((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘ 𝑠)))
9190sumeq2dv 14414 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → Σ𝑛 ∈ (1...(#‘𝐴))Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} ((-1↑((#‘𝑠) − 1)) · (#‘ 𝑠)) = Σ𝑛 ∈ (1...(#‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘ 𝑠)))
9233, 87, 913eqtrd 2658 1 ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → (#‘ 𝐴) = Σ𝑛 ∈ (1...(#‘𝐴))((-1↑(𝑛 − 1)) · Σ𝑠 ∈ {𝑘 ∈ 𝒫 𝐴 ∣ (#‘𝑘) = 𝑛} (#‘ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  {crab 2913  cdif 3564  wss 3567  c0 3907  𝒫 cpw 4149  {csn 4168   cuni 4427   cint 4466   ciun 4511  Disj wdisj 4611   class class class wbr 4644  cfv 5876  (class class class)co 6635  cdom 7938  Fincfn 7940  cc 9919  1c1 9922   · cmul 9926  cle 10060  cmin 10251  -cneg 10252  cn 11005  0cn0 11277  cz 11362  ...cfz 12311  cexp 12843  #chash 13100  Σcsu 14397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-rp 11818  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator