MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inar1 Structured version   Visualization version   GIF version

Theorem inar1 9799
Description: (𝑅1𝐴) for 𝐴 a strongly inaccessible cardinal is equipotent to 𝐴. (Contributed by Mario Carneiro, 6-Jun-2013.)
Assertion
Ref Expression
inar1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)

Proof of Theorem inar1
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inawina 9714 . . . . . 6 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
2 winaon 9712 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
31, 2syl 17 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ On)
4 winalim 9719 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
51, 4syl 17 . . . . 5 (𝐴 ∈ Inacc → Lim 𝐴)
6 r1lim 8799 . . . . 5 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
73, 5, 6syl2anc 573 . . . 4 (𝐴 ∈ Inacc → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
8 onelon 5891 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
93, 8sylan 569 . . . . . . . 8 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → 𝑥 ∈ On)
10 eleq1 2838 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
11 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
1211breq1d 4796 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘∅) ≺ 𝐴))
1310, 12imbi12d 333 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴)))
14 eleq1 2838 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
15 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
1615breq1d 4796 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
1714, 16imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)))
18 eleq1 2838 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
19 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
2019breq1d 4796 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ≺ 𝐴 ↔ (𝑅1‘suc 𝑦) ≺ 𝐴))
2118, 20imbi12d 333 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
22 ne0i 4069 . . . . . . . . . . . . 13 (∅ ∈ 𝐴𝐴 ≠ ∅)
23 0sdomg 8245 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ≺ 𝐴𝐴 ≠ ∅))
2422, 23syl5ibr 236 . . . . . . . . . . . 12 (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ≺ 𝐴))
25 r10 8795 . . . . . . . . . . . . 13 (𝑅1‘∅) = ∅
2625breq1i 4793 . . . . . . . . . . . 12 ((𝑅1‘∅) ≺ 𝐴 ↔ ∅ ≺ 𝐴)
2724, 26syl6ibr 242 . . . . . . . . . . 11 (𝐴 ∈ On → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
281, 2, 273syl 18 . . . . . . . . . 10 (𝐴 ∈ Inacc → (∅ ∈ 𝐴 → (𝑅1‘∅) ≺ 𝐴))
29 eloni 5876 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Ord 𝐴)
30 ordtr 5880 . . . . . . . . . . . . . . 15 (Ord 𝐴 → Tr 𝐴)
3129, 30syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Tr 𝐴)
32 trsuc 5953 . . . . . . . . . . . . . . 15 ((Tr 𝐴 ∧ suc 𝑦𝐴) → 𝑦𝐴)
3332ex 397 . . . . . . . . . . . . . 14 (Tr 𝐴 → (suc 𝑦𝐴𝑦𝐴))
343, 31, 333syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ Inacc → (suc 𝑦𝐴𝑦𝐴))
3534adantl 467 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → (suc 𝑦𝐴𝑦𝐴))
36 r1suc 8797 . . . . . . . . . . . . . . 15 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
37 fvex 6342 . . . . . . . . . . . . . . . . . 18 (𝑅1𝑦) ∈ V
3837cardid 9571 . . . . . . . . . . . . . . . . 17 (card‘(𝑅1𝑦)) ≈ (𝑅1𝑦)
3938ensymi 8159 . . . . . . . . . . . . . . . 16 (𝑅1𝑦) ≈ (card‘(𝑅1𝑦))
40 pwen 8289 . . . . . . . . . . . . . . . 16 ((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) → 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
4139, 40ax-mp 5 . . . . . . . . . . . . . . 15 𝒫 (𝑅1𝑦) ≈ 𝒫 (card‘(𝑅1𝑦))
4236, 41syl6eqbr 4825 . . . . . . . . . . . . . 14 (𝑦 ∈ On → (𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)))
43 winacard 9716 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
4443eleq2d 2836 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
45 cardsdom 9579 . . . . . . . . . . . . . . . . . . 19 (((𝑅1𝑦) ∈ V ∧ 𝐴 ∈ On) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4637, 2, 45sylancr 575 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
4744, 46bitr3d 270 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inaccw → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 ↔ (𝑅1𝑦) ≺ 𝐴))
49 elina 9711 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑧𝐴 𝒫 𝑧𝐴))
5049simp3bi 1141 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Inacc → ∀𝑧𝐴 𝒫 𝑧𝐴)
51 pweq 4300 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (card‘(𝑅1𝑦)) → 𝒫 𝑧 = 𝒫 (card‘(𝑅1𝑦)))
5251breq1d 4796 . . . . . . . . . . . . . . . . . 18 (𝑧 = (card‘(𝑅1𝑦)) → (𝒫 𝑧𝐴 ↔ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5352rspccv 3457 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴 𝒫 𝑧𝐴 → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5450, 53syl 17 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Inacc → ((card‘(𝑅1𝑦)) ∈ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5548, 54sylbird 250 . . . . . . . . . . . . . . 15 (𝐴 ∈ Inacc → ((𝑅1𝑦) ≺ 𝐴 → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴))
5655imp 393 . . . . . . . . . . . . . 14 ((𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴) → 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴)
57 ensdomtr 8252 . . . . . . . . . . . . . 14 (((𝑅1‘suc 𝑦) ≈ 𝒫 (card‘(𝑅1𝑦)) ∧ 𝒫 (card‘(𝑅1𝑦)) ≺ 𝐴) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5842, 56, 57syl2an 583 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ (𝐴 ∈ Inacc ∧ (𝑅1𝑦) ≺ 𝐴)) → (𝑅1‘suc 𝑦) ≺ 𝐴)
5958expr 444 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑅1𝑦) ≺ 𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))
6035, 59imim12d 81 . . . . . . . . . . 11 ((𝑦 ∈ On ∧ 𝐴 ∈ Inacc) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴)))
6160ex 397 . . . . . . . . . 10 (𝑦 ∈ On → (𝐴 ∈ Inacc → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ≺ 𝐴))))
62 vex 3354 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
63 r1lim 8799 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
6462, 63mpan 670 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝑅1𝑥) = 𝑧𝑥 (𝑅1𝑧))
65 nfcv 2913 . . . . . . . . . . . . . . . . . . 19 𝑦𝑧
66 nfcv 2913 . . . . . . . . . . . . . . . . . . . 20 𝑦(𝑅1𝑧)
67 nfcv 2913 . . . . . . . . . . . . . . . . . . . 20 𝑦
68 nfiu1 4684 . . . . . . . . . . . . . . . . . . . 20 𝑦 𝑦𝑥 (card‘(𝑅1𝑦))
6966, 67, 68nfbr 4833 . . . . . . . . . . . . . . . . . . 19 𝑦(𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
70 fveq2 6332 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (𝑅1𝑦) = (𝑅1𝑧))
7170breq1d 4796 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → ((𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
72 fvex 6342 . . . . . . . . . . . . . . . . . . . . . 22 (card‘(𝑅1𝑦)) ∈ V
7362, 72iunex 7294 . . . . . . . . . . . . . . . . . . . . 21 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V
74 ssiun2 4697 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥 → (card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)))
75 ssdomg 8155 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ V → ((card‘(𝑅1𝑦)) ⊆ 𝑦𝑥 (card‘(𝑅1𝑦)) → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))))
7673, 74, 75mpsyl 68 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥 → (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
77 endomtr 8167 . . . . . . . . . . . . . . . . . . . 20 (((𝑅1𝑦) ≈ (card‘(𝑅1𝑦)) ∧ (card‘(𝑅1𝑦)) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7839, 76, 77sylancr 575 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → (𝑅1𝑦) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
7965, 69, 71, 78vtoclgaf 3422 . . . . . . . . . . . . . . . . . 18 (𝑧𝑥 → (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦)))
8079rgen 3071 . . . . . . . . . . . . . . . . 17 𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))
81 iundom 9566 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ V ∧ ∀𝑧𝑥 (𝑅1𝑧) ≼ 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))))
8262, 80, 81mp2an 672 . . . . . . . . . . . . . . . 16 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦)))
8362, 73unex 7103 . . . . . . . . . . . . . . . . . . . 20 (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V
84 ssun2 3928 . . . . . . . . . . . . . . . . . . . 20 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
85 ssdomg 8155 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8683, 84, 85mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
8762xpdom2 8211 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
8886, 87ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
89 ssun1 3927 . . . . . . . . . . . . . . . . . . . 20 𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
90 ssdomg 8155 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (𝑥 ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9183, 89, 90mp2 9 . . . . . . . . . . . . . . . . . . 19 𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))
9283xpdom1 8215 . . . . . . . . . . . . . . . . . . 19 (𝑥 ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9391, 92ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
94 domtr 8162 . . . . . . . . . . . . . . . . . 18 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ (𝑥 × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9588, 93, 94mp2an 672 . . . . . . . . . . . . . . . . 17 (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
96 limomss 7217 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → ω ⊆ 𝑥)
9796, 89syl6ss 3764 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑥 → ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
98 ssdomg 8155 . . . . . . . . . . . . . . . . . . 19 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ V → (ω ⊆ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))))
9983, 97, 98mpsyl 68 . . . . . . . . . . . . . . . . . 18 (Lim 𝑥 → ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
100 infxpidm 9586 . . . . . . . . . . . . . . . . . 18 (ω ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
102 domentr 8168 . . . . . . . . . . . . . . . . 17 (((𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ∧ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) × (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) ≈ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10395, 101, 102sylancr 575 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
104 domtr 8162 . . . . . . . . . . . . . . . 16 (( 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 × 𝑦𝑥 (card‘(𝑅1𝑦))) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦)))) → 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10582, 103, 104sylancr 575 . . . . . . . . . . . . . . 15 (Lim 𝑥 𝑧𝑥 (𝑅1𝑧) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
10664, 105eqbrtrd 4808 . . . . . . . . . . . . . 14 (Lim 𝑥 → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
107106ad2antlr 706 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
108 eleq1a 2845 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 = 𝑥𝐴𝐴))
109 ordirr 5884 . . . . . . . . . . . . . . . . . . . 20 (Ord 𝐴 → ¬ 𝐴𝐴)
1103, 29, 1093syl 18 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Inacc → ¬ 𝐴𝐴)
111108, 110nsyli 156 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (𝐴 ∈ Inacc → ¬ 𝐴 = 𝑥))
112111imp 393 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐴 ∈ Inacc) → ¬ 𝐴 = 𝑥)
113112ad2ant2r 741 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑥)
114 simpll 750 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
115 limord 5927 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
11662elon 5875 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On ↔ Ord 𝑥)
117115, 116sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑥𝑥 ∈ On)
118117ad2antlr 706 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥 ∈ On)
119 cardf 9574 . . . . . . . . . . . . . . . . . . . . . . . . 25 card:V⟶On
120 r1fnon 8794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑅1 Fn On
121 dffn2 6187 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅1 Fn On ↔ 𝑅1:On⟶V)
122120, 121mpbi 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑅1:On⟶V
123 fco 6198 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((card:V⟶On ∧ 𝑅1:On⟶V) → (card ∘ 𝑅1):On⟶On)
124119, 122, 123mp2an 672 . . . . . . . . . . . . . . . . . . . . . . . 24 (card ∘ 𝑅1):On⟶On
125 onss 7137 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ On → 𝑥 ⊆ On)
126 fssres 6210 . . . . . . . . . . . . . . . . . . . . . . . 24 (((card ∘ 𝑅1):On⟶On ∧ 𝑥 ⊆ On) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
127124, 125, 126sylancr 575 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ On → ((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On)
128 ffn 6185 . . . . . . . . . . . . . . . . . . . . . . 23 (((card ∘ 𝑅1) ↾ 𝑥):𝑥⟶On → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
129118, 127, 1283syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥)
1303ad2antlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝐴 ∈ On)
131 simpr 471 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝑥)
132 simplll 758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑥𝐴)
133 ontr1 5914 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
134133imp 393 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ (𝑦𝑥𝑥𝐴)) → 𝑦𝐴)
135130, 131, 132, 134syl12anc 1474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → 𝑦𝐴)
13637, 130, 45sylancr 575 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (𝑅1𝑦) ≺ 𝐴))
1371, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐴 ∈ Inacc → (card‘𝐴) = 𝐴)
138137ad2antlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (card‘𝐴) = 𝐴)
139138eleq2d 2836 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((card‘(𝑅1𝑦)) ∈ (card‘𝐴) ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
140136, 139bitr3d 270 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
141140biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑅1𝑦) ≺ 𝐴 → (card‘(𝑅1𝑦)) ∈ 𝐴))
142135, 141embantd 59 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ∈ 𝐴))
143117ad2antlr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → 𝑥 ∈ On)
144 fvres 6348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦𝑥 → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
145144adantl 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = ((card ∘ 𝑅1)‘𝑦))
146 onelon 5891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
147 fvco3 6417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅1:On⟶V ∧ 𝑦 ∈ On) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
148122, 146, 147sylancr 575 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((card ∘ 𝑅1)‘𝑦) = (card‘(𝑅1𝑦)))
149145, 148eqtrd 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ On ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
150143, 149sylan 569 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) = (card‘(𝑅1𝑦)))
151150eleq1d 2835 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴 ↔ (card‘(𝑅1𝑦)) ∈ 𝐴))
152142, 151sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
153152ralimdva 3111 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
154153impr 442 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴)
155 ffnfv 6530 . . . . . . . . . . . . . . . . . . . . . 22 (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ↔ (((card ∘ 𝑅1) ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ∈ 𝐴))
156129, 154, 155sylanbrc 572 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴)
157 eleq2 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (𝑧𝐴𝑧 𝑦𝑥 (card‘(𝑅1𝑦))))
158157biimpa 462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → 𝑧 𝑦𝑥 (card‘(𝑅1𝑦)))
159 eliun 4658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) ↔ ∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)))
160 cardon 8970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (card‘(𝑅1𝑦)) ∈ On
161160onelssi 5979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (card‘(𝑅1𝑦)))
162149sseq2d 3782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦) ↔ 𝑧 ⊆ (card‘(𝑅1𝑦))))
163161, 162syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑧 ∈ (card‘(𝑅1𝑦)) → 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
164163reximdva 3165 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ On → (∃𝑦𝑥 𝑧 ∈ (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
165159, 164syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (𝑧 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
166158, 165syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ On → ((𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) ∧ 𝑧𝐴) → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
167166expdimp 440 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 → ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
168167ralrimiv 3114 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ On ∧ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦))) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
169168ex 397 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ On → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
170118, 169syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
171 ffun 6188 . . . . . . . . . . . . . . . . . . . . . . . 24 ((card ∘ 𝑅1):On⟶On → Fun (card ∘ 𝑅1))
172124, 171ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 Fun (card ∘ 𝑅1)
173 resfunexg 6623 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun (card ∘ 𝑅1) ∧ 𝑥 ∈ V) → ((card ∘ 𝑅1) ↾ 𝑥) ∈ V)
174172, 62, 173mp2an 672 . . . . . . . . . . . . . . . . . . . . . 22 ((card ∘ 𝑅1) ↾ 𝑥) ∈ V
175 feq1 6166 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤:𝑥𝐴 ↔ ((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴))
176 fveq1 6331 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑤𝑦) = (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))
177176sseq2d 3782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (𝑧 ⊆ (𝑤𝑦) ↔ 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
178177rexbidv 3200 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∃𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∃𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
179178ralbidv 3135 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → (∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦) ↔ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)))
180175, 179anbi12d 616 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ((card ∘ 𝑅1) ↾ 𝑥) → ((𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) ↔ (((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦))))
181174, 180spcev 3451 . . . . . . . . . . . . . . . . . . . . 21 ((((card ∘ 𝑅1) ↾ 𝑥):𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (((card ∘ 𝑅1) ↾ 𝑥)‘𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)))
182156, 170, 181syl6an 663 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦))))
1833ad2antrl 707 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝐴 ∈ On)
184 cfflb 9283 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
185183, 118, 184syl2anc 573 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (∃𝑤(𝑤:𝑥𝐴 ∧ ∀𝑧𝐴𝑦𝑥 𝑧 ⊆ (𝑤𝑦)) → (cf‘𝐴) ⊆ 𝑥))
186182, 185syld 47 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → (cf‘𝐴) ⊆ 𝑥))
18749simp2bi 1140 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ Inacc → (cf‘𝐴) = 𝐴)
188187sseq1d 3781 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Inacc → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
189188ad2antrl 707 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((cf‘𝐴) ⊆ 𝑥𝐴𝑥))
190186, 189sylibd 229 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → 𝐴𝑥))
191 ontri1 5900 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
192183, 118, 191syl2anc 573 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
193190, 192sylibd 229 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)) → ¬ 𝑥𝐴))
194114, 193mt2d 133 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ 𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))
195 iunon 7589 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
19662, 195mpan 670 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On)
197160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (card‘(𝑅1𝑦)) ∈ On)
198196, 197mprg 3075 . . . . . . . . . . . . . . . . 17 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On
199 eqcom 2778 . . . . . . . . . . . . . . . . . 18 ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))))
200 eloni 5876 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ On → Ord 𝑥)
201 eloni 5876 . . . . . . . . . . . . . . . . . . 19 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On → Ord 𝑦𝑥 (card‘(𝑅1𝑦)))
202 ordequn 5971 . . . . . . . . . . . . . . . . . . 19 ((Ord 𝑥 ∧ Ord 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
203200, 201, 202syl2an 583 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → (𝐴 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
204199, 203syl5bi 232 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥 (card‘(𝑅1𝑦)) ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
205118, 198, 204sylancl 574 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝐴 = 𝑥𝐴 = 𝑦𝑥 (card‘(𝑅1𝑦)))))
206113, 194, 205mtord 866 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)
207 onelss 5909 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑥𝐴𝑥𝐴))
208183, 114, 207sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑥𝐴)
209 onelss 5909 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ∈ On → ((card‘(𝑅1𝑦)) ∈ 𝐴 → (card‘(𝑅1𝑦)) ⊆ 𝐴))
210130, 142, 209sylsyld 61 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (card‘(𝑅1𝑦)) ⊆ 𝐴))
211210ralimdva 3111 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴 ∧ Lim 𝑥) ∧ 𝐴 ∈ Inacc) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴))
212211impr 442 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
213 iunss 4695 . . . . . . . . . . . . . . . . . . . 20 ( 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴 ↔ ∀𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
214212, 213sylibr 224 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → 𝑦𝑥 (card‘(𝑅1𝑦)) ⊆ 𝐴)
215208, 214unssd 3940 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴)
216 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑥 = if(𝑥 ∈ On, 𝑥, ∅))
217 iuneq1 4668 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → 𝑦𝑥 (card‘(𝑅1𝑦)) = 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)))
218216, 217uneq12d 3919 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))))
219218eleq1d 2835 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = if(𝑥 ∈ On, 𝑥, ∅) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ↔ (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On))
220 0elon 5921 . . . . . . . . . . . . . . . . . . . . . . . 24 ∅ ∈ On
221220elimel 4289 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑥 ∈ On, 𝑥, ∅) ∈ On
222221elexi 3365 . . . . . . . . . . . . . . . . . . . . . . . . 25 if(𝑥 ∈ On, 𝑥, ∅) ∈ V
223 iunon 7589 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((if(𝑥 ∈ On, 𝑥, ∅) ∈ V ∧ ∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On) → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
224222, 223mpan 670 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On → 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On)
225160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ if(𝑥 ∈ On, 𝑥, ∅) → (card‘(𝑅1𝑦)) ∈ On)
226224, 225mprg 3075 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦)) ∈ On
227221, 226onun2i 5986 . . . . . . . . . . . . . . . . . . . . . 22 (if(𝑥 ∈ On, 𝑥, ∅) ∪ 𝑦 ∈ if (𝑥 ∈ On, 𝑥, ∅)(card‘(𝑅1𝑦))) ∈ On
228219, 227dedth 4278 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ On → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
229117, 228syl 17 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑥 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
230229adantl 467 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝐴 ∧ Lim 𝑥) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On)
2313adantr 466 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴)) → 𝐴 ∈ On)
232 onsseleq 5908 . . . . . . . . . . . . . . . . . . 19 (((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ On ∧ 𝐴 ∈ On) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
233230, 231, 232syl2an 583 . . . . . . . . . . . . . . . . . 18 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ⊆ 𝐴 ↔ ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴)))
234215, 233mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴))
235234orcomd 860 . . . . . . . . . . . . . . . 16 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 ∨ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
236235ord 853 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (¬ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) = 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴))
237206, 236mpd 15 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴)
238137ad2antrl 707 . . . . . . . . . . . . . . 15 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (card‘𝐴) = 𝐴)
239 iscard 9001 . . . . . . . . . . . . . . . 16 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑧𝐴 𝑧𝐴))
240239simprbi 484 . . . . . . . . . . . . . . 15 ((card‘𝐴) = 𝐴 → ∀𝑧𝐴 𝑧𝐴)
241 breq1 4789 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) → (𝑧𝐴 ↔ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
242241rspccv 3457 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 𝑧𝐴 → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
243238, 240, 2423syl 18 . . . . . . . . . . . . . 14 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → ((𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∈ 𝐴 → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴))
244237, 243mpd 15 . . . . . . . . . . . . 13 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴)
245 domsdomtr 8251 . . . . . . . . . . . . 13 (((𝑅1𝑥) ≼ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ∧ (𝑥 𝑦𝑥 (card‘(𝑅1𝑦))) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴)
246107, 244, 245syl2anc 573 . . . . . . . . . . . 12 (((𝑥𝐴 ∧ Lim 𝑥) ∧ (𝐴 ∈ Inacc ∧ ∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴))) → (𝑅1𝑥) ≺ 𝐴)
247246exp43 423 . . . . . . . . . . 11 (𝑥𝐴 → (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑅1𝑥) ≺ 𝐴))))
248247com4l 92 . . . . . . . . . 10 (Lim 𝑥 → (𝐴 ∈ Inacc → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ≺ 𝐴) → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴))))
24913, 17, 21, 28, 61, 248tfinds2 7210 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ Inacc → (𝑥𝐴 → (𝑅1𝑥) ≺ 𝐴)))
250249impd 396 . . . . . . . 8 (𝑥 ∈ On → ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴))
2519, 250mpcom 38 . . . . . . 7 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≺ 𝐴)
252 sdomdom 8137 . . . . . . 7 ((𝑅1𝑥) ≺ 𝐴 → (𝑅1𝑥) ≼ 𝐴)
253251, 252syl 17 . . . . . 6 ((𝐴 ∈ Inacc ∧ 𝑥𝐴) → (𝑅1𝑥) ≼ 𝐴)
254253ralrimiva 3115 . . . . 5 (𝐴 ∈ Inacc → ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴)
255 iundom 9566 . . . . 5 ((𝐴 ∈ On ∧ ∀𝑥𝐴 (𝑅1𝑥) ≼ 𝐴) → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2563, 254, 255syl2anc 573 . . . 4 (𝐴 ∈ Inacc → 𝑥𝐴 (𝑅1𝑥) ≼ (𝐴 × 𝐴))
2577, 256eqbrtrd 4808 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ (𝐴 × 𝐴))
258 winainf 9718 . . . . 5 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
2591, 258syl 17 . . . 4 (𝐴 ∈ Inacc → ω ⊆ 𝐴)
260 infxpen 9037 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2613, 259, 260syl2anc 573 . . 3 (𝐴 ∈ Inacc → (𝐴 × 𝐴) ≈ 𝐴)
262 domentr 8168 . . 3 (((𝑅1𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (𝑅1𝐴) ≼ 𝐴)
263257, 261, 262syl2anc 573 . 2 (𝐴 ∈ Inacc → (𝑅1𝐴) ≼ 𝐴)
264 fvex 6342 . . 3 (𝑅1𝐴) ∈ V
265122fdmi 6192 . . . . 5 dom 𝑅1 = On
2662, 265syl6eleqr 2861 . . . 4 (𝐴 ∈ Inaccw𝐴 ∈ dom 𝑅1)
267 onssr1 8858 . . . 4 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2681, 266, 2673syl 18 . . 3 (𝐴 ∈ Inacc → 𝐴 ⊆ (𝑅1𝐴))
269 ssdomg 8155 . . 3 ((𝑅1𝐴) ∈ V → (𝐴 ⊆ (𝑅1𝐴) → 𝐴 ≼ (𝑅1𝐴)))
270264, 268, 269mpsyl 68 . 2 (𝐴 ∈ Inacc → 𝐴 ≼ (𝑅1𝐴))
271 sbth 8236 . 2 (((𝑅1𝐴) ≼ 𝐴𝐴 ≼ (𝑅1𝐴)) → (𝑅1𝐴) ≈ 𝐴)
272263, 270, 271syl2anc 573 1 (𝐴 ∈ Inacc → (𝑅1𝐴) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  wrex 3062  Vcvv 3351  cun 3721  wss 3723  c0 4063  ifcif 4225  𝒫 cpw 4297   ciun 4654   class class class wbr 4786  Tr wtr 4886   × cxp 5247  dom cdm 5249  cres 5251  ccom 5253  Ord word 5865  Oncon0 5866  Lim wlim 5867  suc csuc 5868  Fun wfun 6025   Fn wfn 6026  wf 6027  cfv 6031  ωcom 7212  cen 8106  cdom 8107  csdm 8108  𝑅1cr1 8789  cardccrd 8961  cfccf 8963  Inaccwcwina 9706  Inacccina 9707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-ac2 9487
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-oi 8571  df-r1 8791  df-rank 8792  df-card 8965  df-cf 8967  df-acn 8968  df-ac 9139  df-wina 9708  df-ina 9709
This theorem is referenced by:  r1omALT  9800  inatsk  9802
  Copyright terms: Public domain W3C validator