MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaghl Structured version   Visualization version   GIF version

Theorem inaghl 25776
Description: The "point lie in angle" relation is independent of the points chosen on the half lines starting from 𝐵. Theorem 11.25 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
inagswap.g (𝜑𝐺 ∈ TarskiG)
inagswap.1 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
inaghl.d (𝜑𝐷𝑃)
inaghl.f (𝜑𝐹𝑃)
inaghl.y (𝜑𝑌𝑃)
inaghl.1 (𝜑𝐷(𝐾𝐵)𝐴)
inaghl.2 (𝜑𝐹(𝐾𝐵)𝐶)
inaghl.3 (𝜑𝑌(𝐾𝐵)𝑋)
Assertion
Ref Expression
inaghl (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem inaghl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinag.p . . . . 5 𝑃 = (Base‘𝐺)
2 isinag.i . . . . 5 𝐼 = (Itv‘𝐺)
3 isinag.k . . . . 5 𝐾 = (hlG‘𝐺)
4 inaghl.d . . . . 5 (𝜑𝐷𝑃)
5 isinag.a . . . . 5 (𝜑𝐴𝑃)
6 isinag.b . . . . 5 (𝜑𝐵𝑃)
7 inagswap.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
8 inaghl.1 . . . . 5 (𝜑𝐷(𝐾𝐵)𝐴)
91, 2, 3, 4, 5, 6, 7, 8hlne1 25545 . . . 4 (𝜑𝐷𝐵)
10 inaghl.f . . . . 5 (𝜑𝐹𝑃)
11 isinag.c . . . . 5 (𝜑𝐶𝑃)
12 inaghl.2 . . . . 5 (𝜑𝐹(𝐾𝐵)𝐶)
131, 2, 3, 10, 11, 6, 7, 12hlne1 25545 . . . 4 (𝜑𝐹𝐵)
14 inaghl.y . . . . 5 (𝜑𝑌𝑃)
15 isinag.x . . . . 5 (𝜑𝑋𝑃)
16 inaghl.3 . . . . 5 (𝜑𝑌(𝐾𝐵)𝑋)
171, 2, 3, 14, 15, 6, 7, 16hlne1 25545 . . . 4 (𝜑𝑌𝐵)
189, 13, 173jca 1261 . . 3 (𝜑 → (𝐷𝐵𝐹𝐵𝑌𝐵))
196adantr 480 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
20 eleq1 2718 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝐵 ∈ (𝐷𝐼𝐹)))
21 eqeq1 2655 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝐵𝐵 = 𝐵))
22 breq1 4688 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦(𝐾𝐵)𝑌𝐵(𝐾𝐵)𝑌))
2321, 22orbi12d 746 . . . . . . 7 (𝑦 = 𝐵 → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
2420, 23anbi12d 747 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
2524adantl 481 . . . . 5 (((𝜑𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑦 = 𝐵) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
265adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
274adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
2810adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
297adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
301, 2, 3, 4, 5, 6, 7, 8hlcomd 25544 . . . . . . . 8 (𝜑𝐴(𝐾𝐵)𝐷)
3130adantr 480 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴(𝐾𝐵)𝐷)
32 eqid 2651 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
3311adantr 480 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
341, 2, 3, 10, 11, 6, 7, 12hlcomd 25544 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐹)
3534adantr 480 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶(𝐾𝐵)𝐹)
36 simpr 476 . . . . . . . . . 10 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
371, 32, 2, 29, 26, 19, 33, 36tgbtwncom 25428 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
381, 2, 3, 33, 28, 26, 29, 19, 35, 37btwnhl 25554 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐹𝐼𝐴))
391, 32, 2, 29, 28, 19, 26, 38tgbtwncom 25428 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐹))
401, 2, 3, 26, 27, 28, 29, 19, 31, 39btwnhl 25554 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐹))
41 eqidd 2652 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 = 𝐵)
4241orcd 406 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))
4340, 42jca 553 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
4419, 25, 43rspcedvd 3348 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
45 simpllr 815 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥𝑃)
46 simpr 476 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eleq1d 2715 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝑥 ∈ (𝐷𝐼𝐹)))
4846eqeq1d 2653 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 = 𝐵𝑥 = 𝐵))
4946breq1d 4695 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦(𝐾𝐵)𝑌𝑥(𝐾𝐵)𝑌))
5048, 49orbi12d 746 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
5147, 50anbi12d 747 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))))
52 simpr 476 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
535ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝑃)
544ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐷𝑃)
5510ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐹𝑃)
567ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐺 ∈ TarskiG)
576ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝑃)
5830ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
5911ad4antr 769 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶𝑃)
6034ad4antr 769 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶(𝐾𝐵)𝐹)
61 simplr 807 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴𝐼𝐶))
621, 32, 2, 56, 53, 45, 59, 61tgbtwncom 25428 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐶𝐼𝐴))
6352, 62eqeltrrd 2731 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐶𝐼𝐴))
641, 2, 3, 59, 55, 53, 56, 57, 60, 63btwnhl 25554 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐹𝐼𝐴))
651, 32, 2, 56, 55, 57, 53, 64tgbtwncom 25428 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐹))
661, 2, 3, 53, 54, 55, 56, 57, 58, 65btwnhl 25554 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐷𝐼𝐹))
6752, 66eqeltrd 2730 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐷𝐼𝐹))
6852orcd 406 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))
6967, 68jca 553 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
7045, 51, 69rspcedvd 3348 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
717ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐺 ∈ TarskiG)
7271ad2antrr 762 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐺 ∈ TarskiG)
73 simplr 807 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝑃)
746ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐵𝑃)
7574ad2antrr 762 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐵𝑃)
7611ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐶𝑃)
7776ad2antrr 762 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶𝑃)
784ad4antr 769 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐷𝑃)
7978ad2antrr 762 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐷𝑃)
8010ad6antr 777 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐹𝑃)
81 simpllr 815 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝑃)
8281ad2antrr 762 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥𝑃)
83 simprl 809 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥(𝐾𝐵)𝑧)
841, 2, 3, 82, 73, 75, 72, 83hlne2 25546 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝐵)
8534ad6antr 777 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶(𝐾𝐵)𝐹)
86 simprr 811 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐶𝐼𝐷))
871, 32, 2, 72, 77, 73, 79, 86tgbtwncom 25428 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐷𝐼𝐶))
881, 2, 3, 72, 73, 75, 77, 79, 80, 84, 85, 87hlpasch 25693 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)))
89 simprr 811 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦 ∈ (𝐷𝐼𝐹))
90 simplr 807 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦𝑃)
9173ad2antrr 762 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧𝑃)
9214ad8antr 785 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌𝑃)
9372ad2antrr 762 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐺 ∈ TarskiG)
9475ad2antrr 762 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐵𝑃)
95 simprl 809 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑦)
961, 2, 3, 91, 90, 94, 93, 95hlcomd 25544 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑧)
9781ad4antr 769 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥𝑃)
9815ad8antr 785 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋𝑃)
9916ad8antr 785 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑋)
100 simp-5r 826 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑋)
1011, 2, 3, 97, 98, 94, 93, 100hlcomd 25544 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋(𝐾𝐵)𝑥)
1021, 2, 3, 92, 98, 97, 93, 94, 99, 101hltr 25550 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑥)
103 simpllr 815 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
104103simpld 474 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑧)
1051, 2, 3, 92, 97, 91, 93, 94, 102, 104hltr 25550 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑧)
1061, 2, 3, 92, 91, 94, 93, 105hlcomd 25544 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑌)
1071, 2, 3, 90, 91, 92, 93, 94, 96, 106hltr 25550 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑌)
108107olcd 407 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))
10989, 108jca 553 . . . . . . . . . . 11 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
110109ex 449 . . . . . . . . . 10 ((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) → ((𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
111110reximdva 3046 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → (∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
11288, 111mpd 15 . . . . . . . 8 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
1135ad4antr 769 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴𝑃)
11415ad4antr 769 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑋𝑃)
115 simpr 476 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥(𝐾𝐵)𝑋)
1161, 2, 3, 81, 114, 74, 71, 115hlne1 25545 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝐵)
11730ad4antr 769 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝐷)
118 simplr 807 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐴𝐼𝐶))
1191, 32, 2, 71, 113, 81, 76, 118tgbtwncom 25428 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐶𝐼𝐴))
1201, 2, 3, 71, 81, 74, 113, 76, 78, 116, 117, 119hlpasch 25693 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑧𝑃 (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
121112, 120r19.29a 3107 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
12270, 121jaodan 843 . . . . . 6 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
123122anasss 680 . . . . 5 ((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
124 inagswap.1 . . . . . . . 8 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1251, 2, 3, 15, 5, 6, 11, 7isinag 25774 . . . . . . . 8 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
126124, 125mpbid 222 . . . . . . 7 (𝜑 → ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
127126simprd 478 . . . . . 6 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
128127adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
129123, 128r19.29a 3107 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13044, 129pm2.61dan 849 . . 3 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13118, 130jca 553 . 2 (𝜑 → ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
1321, 2, 3, 14, 4, 6, 10, 7isinag 25774 . 2 (𝜑 → (𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩ ↔ ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))))
133131, 132mpbird 247 1 (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  ⟨“cs3 13633  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  hlGchlg 25540  inAcinag 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkgld 25396  df-trkg 25397  df-cgrg 25451  df-leg 25523  df-hlg 25541  df-mir 25593  df-rag 25634  df-perpg 25636  df-inag 25773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator