![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in3 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in3.1 | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
Ref | Expression |
---|---|
in3 | ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in3.1 | . . 3 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) | |
2 | 1 | dfvd3i 39327 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | dfvd2ir 39321 | 1 ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd2 39312 ( wvd3 39322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 df-vd2 39313 df-vd3 39325 |
This theorem is referenced by: e223 39379 suctrALT2VD 39587 en3lplem2VD 39595 exbirVD 39604 exbiriVD 39605 rspsbc2VD 39606 tratrbVD 39613 ssralv2VD 39618 imbi12VD 39625 imbi13VD 39626 truniALTVD 39630 trintALTVD 39632 onfrALTlem2VD 39641 |
Copyright terms: Public domain | W3C validator |