![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > in2 | Structured version Visualization version GIF version |
Description: The virtual deduction introduction rule of converting the end virtual hypothesis of 2 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
in2.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) |
Ref | Expression |
---|---|
in2 | ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in2.1 | . . 3 ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
2 | 1 | dfvd2i 39321 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | dfvd1ir 39309 | 1 ⊢ ( 𝜑 ▶ (𝜓 → 𝜒) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ( wvd1 39305 ( wvd2 39313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-vd1 39306 df-vd2 39314 |
This theorem is referenced by: e223 39380 trsspwALT 39565 sspwtr 39568 pwtrVD 39576 pwtrrVD 39577 snssiALTVD 39579 sstrALT2VD 39586 suctrALT2VD 39588 elex2VD 39590 elex22VD 39591 eqsbc3rVD 39592 tpid3gVD 39594 en3lplem1VD 39595 en3lplem2VD 39596 3ornot23VD 39599 orbi1rVD 39600 19.21a3con13vVD 39604 exbirVD 39605 exbiriVD 39606 rspsbc2VD 39607 tratrbVD 39614 syl5impVD 39616 ssralv2VD 39619 imbi12VD 39626 imbi13VD 39627 sbcim2gVD 39628 sbcbiVD 39629 truniALTVD 39631 trintALTVD 39633 onfrALTVD 39644 relopabVD 39654 19.41rgVD 39655 hbimpgVD 39657 ax6e2eqVD 39660 ax6e2ndeqVD 39662 con3ALTVD 39669 |
Copyright terms: Public domain | W3C validator |