![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in0 | Structured version Visualization version GIF version |
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4062 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bianfi 1004 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 214 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
4 | 3 | ineqri 3949 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∩ cin 3714 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-in 3722 df-nul 4059 |
This theorem is referenced by: 0in 4112 csbin 4153 res0 5555 fresaun 6236 oev2 7774 cda0en 9213 ackbij1lem13 9266 ackbij1lem16 9269 incexclem 14787 bitsinv1 15386 bitsinvp1 15393 sadcadd 15402 sadadd2 15404 sadid1 15412 bitsres 15417 smumullem 15436 ressbas 16152 sylow2a 18254 ablfac1eu 18692 indistopon 21027 fctop 21030 cctop 21032 rest0 21195 filconn 21908 volinun 23534 itg2cnlem2 23748 pthdlem2 26895 0pth 27298 1pthdlem2 27309 disjdifprg 29716 disjun0 29736 ofpreima2 29796 ldgenpisyslem1 30556 0elcarsg 30699 carsgclctunlem1 30709 carsgclctunlem3 30712 ballotlemfval0 30887 dfpo2 31973 elima4 32005 bj-rest10 33365 bj-rest0 33370 mblfinlem2 33778 conrel1d 38475 conrel2d 38476 ntrk0kbimka 38857 clsneibex 38920 neicvgbex 38930 qinioo 40283 nnfoctbdjlem 41193 caragen0 41244 |
Copyright terms: Public domain | W3C validator |