MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsmetlem Structured version   Visualization version   GIF version

Theorem imsmetlem 27879
Description: Lemma for imsmet 27880. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsmetlem.1 𝑋 = (BaseSet‘𝑈)
imsmetlem.2 𝐺 = ( +𝑣𝑈)
imsmetlem.7 𝑀 = (inv‘𝐺)
imsmetlem.4 𝑆 = ( ·𝑠OLD𝑈)
imsmetlem.5 𝑍 = (0vec𝑈)
imsmetlem.6 𝑁 = (normCV𝑈)
imsmetlem.8 𝐷 = (IndMet‘𝑈)
imsmetlem.9 𝑈 ∈ NrmCVec
Assertion
Ref Expression
imsmetlem 𝐷 ∈ (Met‘𝑋)

Proof of Theorem imsmetlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imsmetlem.1 . . 3 𝑋 = (BaseSet‘𝑈)
2 fvex 6342 . . 3 (BaseSet‘𝑈) ∈ V
31, 2eqeltri 2845 . 2 𝑋 ∈ V
4 imsmetlem.9 . . 3 𝑈 ∈ NrmCVec
5 imsmetlem.8 . . . 4 𝐷 = (IndMet‘𝑈)
61, 5imsdf 27878 . . 3 (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)
74, 6ax-mp 5 . 2 𝐷:(𝑋 × 𝑋)⟶ℝ
8 imsmetlem.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
9 imsmetlem.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
10 imsmetlem.6 . . . . . 6 𝑁 = (normCV𝑈)
111, 8, 9, 10, 5imsdval2 27876 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
124, 11mp3an1 1558 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
1312eqeq1d 2772 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0))
14 neg1cn 11325 . . . . . 6 -1 ∈ ℂ
151, 9nvscl 27815 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
164, 14, 15mp3an12 1561 . . . . 5 (𝑦𝑋 → (-1𝑆𝑦) ∈ 𝑋)
171, 8nvgcl 27809 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
184, 17mp3an1 1558 . . . . 5 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
1916, 18sylan2 572 . . . 4 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋)
20 imsmetlem.5 . . . . 5 𝑍 = (0vec𝑈)
211, 20, 10nvz 27858 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
224, 19, 21sylancr 567 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑁‘(𝑥𝐺(-1𝑆𝑦))) = 0 ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
231, 20nvzcl 27823 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑍𝑋)
244, 23ax-mp 5 . . . . . 6 𝑍𝑋
251, 8nvrcan 27813 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋)) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
264, 25mpan 662 . . . . . 6 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑍𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2724, 26mp3an2 1559 . . . . 5 (((𝑥𝐺(-1𝑆𝑦)) ∈ 𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
2819, 27sylancom 568 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ (𝑥𝐺(-1𝑆𝑦)) = 𝑍))
29 simpl 468 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑥𝑋)
3016adantl 467 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
31 simpr 471 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → 𝑦𝑋)
321, 8nvass 27811 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋)) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
334, 32mpan 662 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
3429, 30, 31, 33syl3anc 1475 . . . . . 6 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)))
351, 8, 9, 20nvlinv 27841 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
364, 35mpan 662 . . . . . . . 8 (𝑦𝑋 → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3736adantl 467 . . . . . . 7 ((𝑥𝑋𝑦𝑋) → ((-1𝑆𝑦)𝐺𝑦) = 𝑍)
3837oveq2d 6808 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((-1𝑆𝑦)𝐺𝑦)) = (𝑥𝐺𝑍))
391, 8, 20nv0rid 27824 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
404, 39mpan 662 . . . . . . 7 (𝑥𝑋 → (𝑥𝐺𝑍) = 𝑥)
4140adantr 466 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑍) = 𝑥)
4234, 38, 413eqtrd 2808 . . . . 5 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = 𝑥)
431, 8, 20nv0lid 27825 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
444, 43mpan 662 . . . . . 6 (𝑦𝑋 → (𝑍𝐺𝑦) = 𝑦)
4544adantl 467 . . . . 5 ((𝑥𝑋𝑦𝑋) → (𝑍𝐺𝑦) = 𝑦)
4642, 45eqeq12d 2785 . . . 4 ((𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑦))𝐺𝑦) = (𝑍𝐺𝑦) ↔ 𝑥 = 𝑦))
4728, 46bitr3d 270 . . 3 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑦)) = 𝑍𝑥 = 𝑦))
4813, 22, 473bitrd 294 . 2 ((𝑥𝑋𝑦𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
49 simpr 471 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → 𝑥𝑋)
501, 9nvscl 27815 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝑧𝑋) → (-1𝑆𝑧) ∈ 𝑋)
514, 14, 50mp3an12 1561 . . . . . . . 8 (𝑧𝑋 → (-1𝑆𝑧) ∈ 𝑋)
5251adantr 466 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (-1𝑆𝑧) ∈ 𝑋)
531, 8nvgcl 27809 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
544, 53mp3an1 1558 . . . . . . 7 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
5549, 52, 54syl2anc 565 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
56553adant3 1125 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋)
571, 8nvgcl 27809 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
584, 57mp3an1 1558 . . . . . . 7 ((𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
5916, 58sylan2 572 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
60593adant2 1124 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋)
611, 8, 10nvtri 27859 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
624, 61mp3an1 1558 . . . . 5 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋 ∧ (𝑧𝐺(-1𝑆𝑦)) ∈ 𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
6356, 60, 62syl2anc 565 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) ≤ ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
64123adant1 1123 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
65 simp1 1129 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → 𝑧𝑋)
66163ad2ant3 1128 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) ∈ 𝑋)
671, 8nvass 27811 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ ((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋)) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
684, 67mpan 662 . . . . . . . 8 (((𝑥𝐺(-1𝑆𝑧)) ∈ 𝑋𝑧𝑋 ∧ (-1𝑆𝑦) ∈ 𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
6956, 65, 66, 68syl3anc 1475 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))))
70 simpl 468 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → 𝑧𝑋)
711, 8nvass 27811 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋)) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
724, 71mpan 662 . . . . . . . . . . 11 ((𝑥𝑋 ∧ (-1𝑆𝑧) ∈ 𝑋𝑧𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
7349, 52, 70, 72syl3anc 1475 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)))
741, 8, 9, 20nvlinv 27841 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
754, 74mpan 662 . . . . . . . . . . . 12 (𝑧𝑋 → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7675adantr 466 . . . . . . . . . . 11 ((𝑧𝑋𝑥𝑋) → ((-1𝑆𝑧)𝐺𝑧) = 𝑍)
7776oveq2d 6808 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺((-1𝑆𝑧)𝐺𝑧)) = (𝑥𝐺𝑍))
7840adantl 467 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑋) → (𝑥𝐺𝑍) = 𝑥)
7973, 77, 783eqtrd 2808 . . . . . . . . 9 ((𝑧𝑋𝑥𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
80793adant3 1125 . . . . . . . 8 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺𝑧) = 𝑥)
8180oveq1d 6807 . . . . . . 7 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (((𝑥𝐺(-1𝑆𝑧))𝐺𝑧)𝐺(-1𝑆𝑦)) = (𝑥𝐺(-1𝑆𝑦)))
8269, 81eqtr3d 2806 . . . . . 6 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦))) = (𝑥𝐺(-1𝑆𝑦)))
8382fveq2d 6336 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))) = (𝑁‘(𝑥𝐺(-1𝑆𝑦))))
8464, 83eqtr4d 2807 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) = (𝑁‘((𝑥𝐺(-1𝑆𝑧))𝐺(𝑧𝐺(-1𝑆𝑦)))))
851, 8, 9, 10, 5imsdval2 27876 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
864, 85mp3an1 1558 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑧𝐺(-1𝑆𝑥))))
871, 8, 9, 10nvdif 27855 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
884, 87mp3an1 1558 . . . . . . 7 ((𝑧𝑋𝑥𝑋) → (𝑁‘(𝑧𝐺(-1𝑆𝑥))) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
8986, 88eqtrd 2804 . . . . . 6 ((𝑧𝑋𝑥𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
90893adant3 1125 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑥) = (𝑁‘(𝑥𝐺(-1𝑆𝑧))))
911, 8, 9, 10, 5imsdval2 27876 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
924, 91mp3an1 1558 . . . . . 6 ((𝑧𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
93923adant2 1124 . . . . 5 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑧𝐷𝑦) = (𝑁‘(𝑧𝐺(-1𝑆𝑦))))
9490, 93oveq12d 6810 . . . 4 ((𝑧𝑋𝑥𝑋𝑦𝑋) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑁‘(𝑥𝐺(-1𝑆𝑧))) + (𝑁‘(𝑧𝐺(-1𝑆𝑦)))))
9563, 84, 943brtr4d 4816 . . 3 ((𝑧𝑋𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
96953coml 1120 . 2 ((𝑥𝑋𝑦𝑋𝑧𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
973, 7, 48, 96ismeti 22349 1 𝐷 ∈ (Met‘𝑋)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  Vcvv 3349   class class class wbr 4784   × cxp 5247  wf 6027  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140  cle 10276  -cneg 10468  Metcme 19946  invcgn 27679  NrmCVeccnv 27773   +𝑣 cpv 27774  BaseSetcba 27775   ·𝑠OLD cns 27776  0veccn0v 27777  normCVcnmcv 27779  IndMetcims 27780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-met 19954  df-grpo 27681  df-gid 27682  df-ginv 27683  df-gdiv 27684  df-ablo 27733  df-vc 27748  df-nv 27781  df-va 27784  df-ba 27785  df-sm 27786  df-0v 27787  df-vs 27788  df-nmcv 27789  df-ims 27790
This theorem is referenced by:  imsmet  27880
  Copyright terms: Public domain W3C validator