![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsmet | Structured version Visualization version GIF version |
Description: The induced metric of a normed complex vector space is a metric space. Part of Definition 2.2-1 of [Kreyszig] p. 58. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsmet.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
imsmet.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
imsmet | ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsmet.8 | . 2 ⊢ 𝐷 = (IndMet‘𝑈) | |
2 | fveq2 6332 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (IndMet‘𝑈) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
3 | imsmet.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | fveq2 6332 | . . . . . 6 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (BaseSet‘𝑈) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
5 | 3, 4 | syl5eq 2817 | . . . . 5 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → 𝑋 = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
6 | 5 | fveq2d 6336 | . . . 4 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → (Met‘𝑋) = (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)))) |
7 | 2, 6 | eleq12d 2844 | . . 3 ⊢ (𝑈 = if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) → ((IndMet‘𝑈) ∈ (Met‘𝑋) ↔ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))))) |
8 | eqid 2771 | . . . 4 ⊢ (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
9 | eqid 2771 | . . . 4 ⊢ ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = ( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
10 | eqid 2771 | . . . 4 ⊢ (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) = (inv‘( +𝑣 ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) | |
11 | eqid 2771 | . . . 4 ⊢ ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = ( ·𝑠OLD ‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
12 | eqid 2771 | . . . 4 ⊢ (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (0vec‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
13 | eqid 2771 | . . . 4 ⊢ (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (normCV‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
14 | eqid 2771 | . . . 4 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) = (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) | |
15 | elimnvu 27879 | . . . 4 ⊢ if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉) ∈ NrmCVec | |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | imsmetlem 27885 | . . 3 ⊢ (IndMet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉)) ∈ (Met‘(BaseSet‘if(𝑈 ∈ NrmCVec, 𝑈, 〈〈 + , · 〉, abs〉))) |
17 | 7, 16 | dedth 4278 | . 2 ⊢ (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (Met‘𝑋)) |
18 | 1, 17 | syl5eqel 2854 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ifcif 4225 〈cop 4322 ‘cfv 6031 + caddc 10141 · cmul 10143 abscabs 14182 Metcme 19947 invcgn 27685 NrmCVeccnv 27779 +𝑣 cpv 27780 BaseSetcba 27781 ·𝑠OLD cns 27782 0veccn0v 27783 normCVcnmcv 27785 IndMetcims 27786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-met 19955 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-vs 27794 df-nmcv 27795 df-ims 27796 |
This theorem is referenced by: imsxmet 27887 vacn 27889 nmcvcn 27890 smcnlem 27892 blocni 28000 minvecolem2 28071 minvecolem3 28072 minvecolem4a 28073 minvecolem4 28076 minvecolem7 28079 hhmet 28371 hhssmet 28474 |
Copyright terms: Public domain | W3C validator |