![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsdval | Structured version Visualization version GIF version |
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsdval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
imsdval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
imsdval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
imsdval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
imsdval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsdval.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
2 | imsdval.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | imsdval.8 | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | 1, 2, 3 | imsval 27880 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
5 | 4 | 3ad2ant1 1127 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐷 = (𝑁 ∘ 𝑀)) |
6 | 5 | fveq1d 6335 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉)) |
7 | imsdval.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 1 | nvmf 27840 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) |
9 | opelxpi 5287 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
10 | fvco3 6419 | . . . . 5 ⊢ ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) | |
11 | 8, 9, 10 | syl2an 583 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
12 | 11 | 3impb 1107 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
13 | 6, 12 | eqtrd 2805 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
14 | df-ov 6799 | . 2 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
15 | df-ov 6799 | . . 3 ⊢ (𝐴𝑀𝐵) = (𝑀‘〈𝐴, 𝐵〉) | |
16 | 15 | fveq2i 6336 | . 2 ⊢ (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉)) |
17 | 13, 14, 16 | 3eqtr4g 2830 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 〈cop 4323 × cxp 5248 ∘ ccom 5254 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 NrmCVeccnv 27779 BaseSetcba 27781 −𝑣 cnsb 27784 normCVcnmcv 27785 IndMetcims 27786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-ltxr 10285 df-sub 10474 df-neg 10475 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-vs 27794 df-nmcv 27795 df-ims 27796 |
This theorem is referenced by: imsdval2 27882 nvnd 27883 vacn 27889 smcnlem 27892 sspimsval 27933 blometi 27998 blocnilem 27999 ubthlem2 28067 minvecolem2 28071 minvecolem4 28076 minvecolem5 28077 minvecolem6 28078 h2hmetdval 28175 hhssmetdval 28475 |
Copyright terms: Public domain | W3C validator |