![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impexp | Structured version Visualization version GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 459 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 460 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 199 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: pm4.14 601 nan 603 pm4.87 607 imp4aOLD 614 exp4aOLD 633 imdistan 725 pm5.3 748 pm5.6 971 2sb6 2472 r2allem 2966 r3al 2969 r19.23t 3050 ceqsralt 3260 rspc2gv 3352 ralrab 3401 ralrab2 3405 euind 3426 reu2 3427 reu3 3429 rmo4 3432 reuind 3444 2reu5lem3 3448 rmo2 3559 rmo3 3561 ralss 3701 rabss 3712 raldifb 3783 rabsssn 4247 raldifsni 4357 unissb 4501 elintrab 4520 ssintrab 4532 dftr5 4788 axrep5 4809 reusv2lem4 4902 reusv2 4904 reusv3 4906 raliunxp 5294 fununi 6002 fvn0ssdmfun 6390 dff13 6552 ordunisuc2 7086 dfom2 7109 dfsmo2 7489 qliftfun 7875 dfsup2 8391 wemapsolem 8496 iscard2 8840 acnnum 8913 aceq1 8978 dfac9 8996 dfacacn 9001 axgroth6 9688 sstskm 9702 infm3 11020 prime 11496 raluz 11774 raluz2 11775 nnwos 11793 ralrp 11890 facwordi 13116 cotr2g 13761 rexuzre 14136 limsupgle 14252 ello12 14291 elo12 14302 lo1resb 14339 rlimresb 14340 o1resb 14341 modfsummod 14570 isprm2 15442 isprm4 15444 isprm7 15467 acsfn2 16371 pgpfac1 18525 isirred2 18747 isdomn2 19347 coe1fzgsumd 19720 evl1gsumd 19769 islindf4 20225 ist1-2 21199 isnrm2 21210 dfconn2 21270 1stccn 21314 iskgen3 21400 hausdiag 21496 cnflf 21853 txflf 21857 cnfcf 21893 metcnp 22393 caucfil 23127 ovolgelb 23294 ismbl 23340 dyadmbllem 23413 itg2leub 23546 ellimc3 23688 mdegleb 23869 jensen 24760 dchrelbas2 25007 dchrelbas3 25008 nmoubi 27755 nmobndseqi 27762 nmobndseqiALT 27763 h1dei 28537 nmopub 28895 nmfnleub 28912 mdsl1i 29308 mdsl2i 29309 elat2 29327 moel 29451 rmo3f 29462 rmo4fOLD 29463 eulerpartlemgvv 30566 bnj115 30919 bnj1109 30983 bnj1533 31048 bnj580 31109 bnj864 31118 bnj865 31119 bnj1049 31168 bnj1090 31173 bnj1093 31174 bnj1133 31183 bnj1171 31194 climuzcnv 31691 axextprim 31704 biimpexp 31723 dfpo2 31771 dfon2lem8 31819 dffun10 32146 filnetlem4 32501 bj-axrep5 32917 wl-2sb6d 33471 poimirlem25 33564 poimirlem30 33569 inxpss 34223 moantr 34267 isat3 34912 isltrn2N 35724 cdlemefrs29bpre0 36001 cdleme32fva 36042 dford4 37913 fnwe2lem2 37938 isdomn3 38099 ifpidg 38153 ifpim23g 38157 elmapintrab 38199 undmrnresiss 38227 df3or2 38377 df3an2 38378 dfhe3 38386 dffrege76 38550 dffrege115 38589 ntrneiiso 38706 pm11.62 38911 2sbc6g 38933 expcomdg 39023 impexpd 39036 dfvd2 39112 dfvd3 39124 rabssf 39616 2rexsb 41491 2rexrsb 41492 rmoanim 41500 snlindsntor 42585 elbigo2 42671 |
Copyright terms: Public domain | W3C validator |