![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp4a | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp4a | ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 614 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | ex 449 | 1 ⊢ (𝜑 → (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: imp4bOLD 617 imp4d 619 imp55 628 imp511 629 reuss2 4050 wefrc 5260 f1oweALT 7318 tfrlem9 7651 tz7.49 7710 oaordex 7809 dfac2b 9163 dfac2OLD 9165 zorn2lem4 9533 zorn2lem7 9536 psslinpr 10065 facwordi 13290 ndvdssub 15355 pmtrfrn 18098 elcls 21099 elcls3 21109 neibl 22527 met2ndc 22549 itgcn 23828 branmfn 29294 atcvatlem 29574 atcvat4i 29586 prtlem15 34682 cvlsupr4 35153 cvlsupr5 35154 cvlsupr6 35155 2llnneN 35216 cvrat4 35250 llnexchb2 35676 cdleme48gfv1 36344 cdlemg6e 36430 dihord6apre 37065 dihord5b 37068 dihord5apre 37071 dihglblem5apreN 37100 dihglbcpreN 37109 |
Copyright terms: Public domain | W3C validator |