![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 614 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 444 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: fundmen 8195 fiint 8402 ltexprlem6 10055 divgt0 11083 divge0 11084 le2sq2 13133 iscatd 16535 isfuncd 16726 islmodd 19071 lmodvsghm 19126 islssd 19138 basis2 20957 neindisj 21123 dvidlem 23878 spansneleq 28738 elspansn4 28741 adjmul 29260 kbass6 29289 mdsl0 29478 chirredlem1 29558 poimirlem29 33751 rngonegmn1r 34054 3dim1 35256 linepsubN 35541 pmapsub 35557 tgoldbach 42215 tgoldbachOLD 42222 |
Copyright terms: Public domain | W3C validator |