![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim1i | Structured version Visualization version GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. Inference associated with imim1 83. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 62 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 106 impt 169 jarl 175 pm2.67-2 416 pm3.41 581 pm3.42 582 jaob 839 3jaob 1430 merco1 1678 19.21v 1908 19.39 1956 r19.37 3115 axrep2 4806 dmcosseq 5419 fliftfun 6602 tz7.48lem 7581 ac6sfi 8245 frfi 8246 domunfican 8274 iunfi 8295 finsschain 8314 cantnfval2 8604 cantnflt 8607 cnfcom 8635 kmlem1 9010 kmlem13 9022 axpowndlem2 9458 wunfi 9581 ingru 9675 xrub 12180 hashf1lem2 13278 caubnd 14142 fsum2d 14546 fsumabs 14577 fsumrlim 14587 fsumo1 14588 fsumiun 14597 fprod2d 14755 ablfac1eulem 18517 mplcoe1 19513 mplcoe5 19516 mdetunilem9 20474 t1t0 21200 fiuncmp 21255 ptcmpfi 21664 isfil2 21707 fsumcn 22720 ovolfiniun 23315 finiunmbl 23358 volfiniun 23361 itgfsum 23638 dvmptfsum 23783 pntrsumbnd 25300 nmounbseqi 27760 nmounbseqiALT 27761 isch3 28226 dmdmd 29287 mdslmd1lem2 29313 sumdmdi 29407 dmdbr4ati 29408 dmdbr6ati 29410 gsumle 29907 gsumvsca1 29910 gsumvsca2 29911 pwsiga 30321 bnj1533 31048 bnj110 31054 bnj1523 31265 dfon2lem8 31819 meran1 32535 bj-bi3ant 32699 bj-ssbid2ALT 32771 bj-spnfw 32783 bj-spst 32804 bj-19.23bit 32806 bj-axrep2 32914 wl-syls2 33422 heibor1lem 33738 isltrn2N 35724 cdlemefrs32fva 36005 fiinfi 38195 con3ALT2 39053 alrim3con13v 39060 islinindfis 42563 setrec1lem4 42762 |
Copyright terms: Public domain | W3C validator |